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Summary 

Hydrological modelling is nowadays an essential step for sustainable management of water and 

land resources. Despite the fact that most of the hydrological processes are well known and 

equations performance is accurate, most of the challenge in hydrological modelling focusing on 

whether the model can, in some close way, represent the real world.  Most hydrological models 

are generally biased during modelling exercises, including setting up and interpreting the 

results.  The correct representation depends on the input data, which also depend on two 

practices: i) the correct harmonization of the data and the available scales, before the 

configuration of the model and ii) the use of adequate tools and complementary for data pre-

processing. The absence of these practices leads to a reduction in the quality of the data and 

therefore a decrease in the precision of the results. 

The focus of this thesis is in the improvements about hydrological modelling in agrarian sub-

basins in the semiarid. These environments are especially sensitive to biophysical aspects as 

climate, soils, vegetation and land management. This work offers a complementary approach to 

hydrological modelling of agrarian watersheds in Spain, through using the Soil Water and 

Assessment Tool (SWAT). 

In Spain, when regional modelling and long-term modelling is required, model inputs data are 

scarce and scales are not usually compatible. One of the main, untreated inputs, to run models 

over these characteristics is the soil data. In this work, the Self-Organizing maps (SOM) are 

presented as an alternative method to improve digital soil mapping for hydrological modelling 

getting promising improvements in comparison to taxonomic classic approach. There is not 

previous evidence in literature using this method for soil mapping in hydrology modelling.  

Other sensitive data is the land use land cover (LULC), as a spatial dynamic array that 

influences water flows. Using Earth Observation (EO) and surveys allow including a large 

dataset of crop rotations schemas and crop practices to model more realistic agrarian effect at 

subbasin scale. Once that model is calibrated and validated, LULC scenarios can be assessed to 

determine the influence of future land policy making in water resources. 

The former model improvements were developed in one of the most recurrent drought alerted 

watershed in last decades in Duero River basin, the Cega-Eresma-Adaja (CEA) exploitation 

system. An exploitation system is referred as a management system grouping watersheds with 

similar characteristics (i.e. biophysical parameters, climate and land management) but this 

grouping is done to facilitate management and decision making by the River Basin Authority. 

However, there are important differences from technical point of view referred to hydrology and 
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land and water dynamics for each River implies different water balance flows as demonstrated 

in this work.  

In this work, was studied the influence of different soil maps and resolutions on the main 

hydrological components of a sub-arid watershed. The Soil Water and Assessment Tool 

(SWAT) was parameterized with three different soil maps. A first one was based on 

Harmonized World Soil database from FAO, at scale 1:1,000,000 (HWSD). The other two were 

based on a Kriging interpolation at 100x100 m from soil samples. To obtain soil properties map 

from it, two strategies were applied: one was to average the soil properties following the official 

taxonomic soil units at 1:400,000 scale (Agricultural Technological Institute of Castilla and 

Leon - ITACyL) and the other was to applied Self-organizing map (SOM)  to create the soil 

units (SOMM). The results suggest that scale and soil properties mapping influence HRU 

definition, which in turn affects water flow through the soils. Statistical metrics of model 

performance were improved from R2 =0.62 and NSE=0.46 with HWSD soil map to R2 =0.86 

and NSE=0.84 with SOM and similar values were achieved during validation. 

The CEA watershed for the period 2004-2014 was calibrated and validated analysing 

hydrological year types to provide more details of low-flows during spring-summer periods. 

The study reveals that aspects such as crop rotation, soil management and their associated 

measures in Mediterranean basins are key factors for water resource management facing climate 

change. These results are expected to serve stakeholders and River Basin Authorities in 

conducting better-integrated water management practices in the watershed. 

Cereals in CEA midlands are a predominant crop choice because of climate and soil factors. 

These crops represent most of the agricultural water demand in the midlands. Crop rotations of 

wheat, fallow and barley are major choices within cereal crop sequences. Characterizing 

agricultural land processes coupling weather and soils are challenging because of multeity of 

factors affecting vegetation growth of cereals. One of these growth factors in semiarid is 

especially the rainfall on agricultural fields, in which soil properties and climate are strongly 

correlated with crop yield. These relationships are commonly analysed using vegetation indices 

such as the normalized difference vegetation index (NDVI). 

NDVI series from two zones, belonging to different agroclimatic zones from CEA, were 

examined decomposing them into the overall average pattern, the residual series, and anomalies 

series. All of them studied by applying the concept of the generalized Hurst exponent (GHE). 

This is derived from the generalised structure function (GSF), which characterizes the series‘ 

scaling properties.  
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The overall pattern of the NDVI original series, NVDI residual and NDVI anomalies were 

examined from both zones. These presenting differences explained from climate-soil 

characteristics. The significant differences found in the soil reflectance bands confirm the 

differences in these two zones. Original NDVI series are persistent and multiscaling as other 

works reports. With respect to the scaling properties of the NDVI residual series, these 

presented Hurst exponents significantly lower than 0.5 indicating the structure of the signals. A 

stronger anti-persistent character was obtained in NDVI residual series with significant 

differences between zones. Similar is the case of NDVI anomalies with minor scaling 

properties.  

These findings reveal the influences of soil-climate interactions in the dynamic of the NDVI 

series for rainfed cereal crops in a semiarid climate. 

The assessment of land use and land cover (LULC) scenarios is a relevant field of study to 

anticipate future environmental impacts at the basin scale. Often the LULC scenarios and 

transition rules for hydrological modelling are based on expert criteria and disregard a 

participatory approach for its definition. In this work was analyzed the potential implications of 

three stakeholder informed LULC scenarios, and its implications in the water balance 

components of a sub-arid catchment of CEA. The LULC scenarios were defined through a 

participatory scenario process, involving a wide range of stakeholders and experts, and reflect 

three contrasting local land use developments: Land Sharing (LSH), Land sparing (LSP) and 

Land balance (LBA). The SWAT model was used to quantify the water resources implications 

linked to the LULC baseline scenario and the alternative LULC futures. The three scenario 

narratives underpinning the modelling scenarios highlight differences among reforestation 

transitions, landscape fragmentation, cropping patterns, and agricultural specialization. 
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Resumen 

La modelización hidrológica es hoy en día un paso fundamental para la gestión sostenible de los 

recursos hídricos y de suelo. A pesar de que la mayoría de los procesos hidrológicos son bien 

conocidos y el funcionamiento de las ecuaciones es preciso, la mayor parte del desafío en la 

modelización hidrológica se centra en que el modelo pueda, de algún modo cercano, representar 

el mundo real. La mayoría de modelos hidrológicos generalmente se sesgan durante los 

ejercicios de modelización, incluida la configuración y la interpretación de los resultados. Una  

representación adecuada depende en gran parte de los datos de entrada, los cuales también 

dependen de dos prácticas: i) la correcta de armonización de los datos y de las escalas 

disponibles, antes de la configuración del modelo y ii) el uso de herramientas adecuadas y 

complementarias para el pre-procesamiento de datos. La ausencia de estas prácticas conlleva 

una reducción en la calidad de los datos y por lo tanto una disminución en la precisión de los 

resultados. 

Esta  tesis se centra en las mejoras realizadas sobre la modelización hidrológica en subcuencas 

agrarias  en el semiárido. Estos entornos son especialmente sensibles a aspectos biofísicos como 

el clima, los suelos, la vegetación y la gestión del territorio. Este trabajo ofrece un enfoque 

complementario a la modelización hidrológica de cuencas hidrográficas agrarias en España, 

mediante el uso de la herramienta de Evaluación de Agua y Suelo (SWAT), por sus siglas en 

inglés.  

En España, cuando se requiere un modelo regional y un modelo a largo plazo, los datos de 

entrada del modelo son escasos y las escalas no suelen ser compatibles. Una de las principales 

entradas, no tratadas, para ejecutar modelos sobre estas características son los datos del suelo. 

En este trabajo, los mapas Autoorganizados (SOM) por sus siglas en inglés, se presentan como 

un método alternativo para mejorar el mapeo digital de los suelos para la modelización 

hidrológica, obteniendo mejoras prometedoras en comparación con el enfoque taxonómico 

clásico. No existe evidencia previa en la literatura sobre el uso de este método para el mapeo de 

suelos en modelos hidrológicos. 

 Otro dato sensible en el modelo, es la cobertura y uso del suelo (LULC) por sus siglas en 

inglés, como una matriz dinámica espacial que influye en los flujos de agua. El uso de la 

observación de la Tierra (EO) y de encuestas, permite incluir un gran conjunto de datos de 

esquemas de rotación de cultivos y prácticas de cultivos para capturar con el modelo el efecto 

agrario, más realista, a escala de subcuenca. Una vez que ese modelo está calibrado y validado, 

los escenarios LULC pueden evaluarse para determinar la influencia de la futura formulación de 

políticas territoriales y de los recursos hídricos. 
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Las mejoras del modelo se desarrollaron en una de las cuencas hidrográficas con alerta de 

sequía más recurrentes de las últimas décadas en la cuenca del río Duero, el sistema de 

explotación Cega-Eresma-Adaja (CEA). Un sistema de explotación se define como un sistema 

de gestión que agrupa cuencas hidrográficas con características similares (es decir, parámetros 

biofísicos, clima y gestión de la tierra), esta agrupación se realiza para facilitar la gestión y la 

toma de decisiones por parte de la autoridad de cuenca. Sin embargo, en la aplicación de este 

concepto originan importantes diferencias desde el punto de vista técnico referido a la 

hidrología, la dinámica del uso y cobertura del  suelo. El caudal resultante para cada Río es el 

resultado de diferentes flujos del balance hídrico como se demuestra en este trabajo. 

En este trabajo se estudia la influencia sobre los principales componentes hidrológicos de una 

cuenca sub-árida, usando diferentes mapas de suelos y varias resoluciones. Se parametrizó el 

modelo SWAT con tres mapas de suelos diferentes. El primero se basó en la base de datos 

armonizada de suelos mundiales de la FAO, a escala 1: 1.000.000 (HWSD). Los otros dos se 

basaron en una interpolación de Kriging a 100x100 m de muestras de suelo. Para la obtención 

del mapa de propiedades del suelo se aplicaron dos estrategias: una fue promediar las 

propiedades del suelo siguiendo las unidades taxonómicas oficiales de suelo a escala 1: 400.000 

(Instituto Tecnológico Agrario de Castilla y León - ITACyL) y la otra fue aplicar el método 

(SOM) para crear las unidades de suelo (SOMM). Los resultados sugieren que el mapeo de 

propiedades del suelo y la escala influyen en la definición de las  unidades de respuesta 

hidrológica (HRUs), lo que a su vez afecta el flujo de agua a través de los suelos. Las métricas 

estadísticas del rendimiento del modelo se mejoraron de R2 = 0.62 y NSE = 0.46 con el mapa de 

suelos HWSD a R2 = 0.86 y NSE = 0.84 con SOM y se lograron valores similares durante la 

validación. 

La cuenca del CEA para el período 2004-2014 se calibró y validó analizando los tipos de años 

hidrológicos para proporcionar más detalles de los caudales bajos durante los períodos 

primavera-verano. El estudio reveló que aspectos como la rotación de cultivos, la gestión del 

suelo y sus medidas asociadas en las cuencas mediterráneas son factores clave para la gestión de 

los recursos hídricos frente al cambio climático. Se espera que estos resultados sirvan a los 

actores y a las autoridades de las cuencas hidrográficas para llevar a cabo mejores prácticas 

integradas de gestión del agua en la cuenca. 

Los cereales en las tierras centrales de CEA son una opción de cultivo predominante debido a 

factores climáticos y del suelo. Estos cultivos representan la mayor parte de la demanda de agua 

para la agricultura en la región central. Las rotaciones de cultivos de trigo, barbecho y cebada 

son opciones muy importantes dentro de las secuencias de cultivos de cereales. Caracterizar los 

procesos de tierras agrícolas que combinan el clima y los suelos, es un desafío debido a la 
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multiplicidad de factores que afectan el crecimiento de la vegetación de los cereales. Uno de 

estos factores de crecimiento en el semiárido, es especialmente la lluvia en los campos 

agrícolas, en los cuales las propiedades del suelo y el clima están fuertemente correlacionados 

con el rendimiento de los cultivos. Estas relaciones se analizan comúnmente utilizando índices 

de vegetación como el índice de vegetación de diferencia normalizada (NDVI). 

Se examinaron series de NDVI de dos zonas, pertenecientes a diferentes zonas agroclimáticas 

del CEA, descomponiéndolas en el patrón promedio general, la serie residual y la serie de 

anomalías. Estas se estudiaron aplicando el concepto de exponente de Hurst generalizado 

(GHE). Esto se deriva de la función de estructura generalizada (GSF), que caracteriza las 

propiedades de escala de la serie.  

El patrón general de la serie NDVI de ambas zonas presentó diferencias que podrían explicarse 

por las características de precipitación y suelo de cada una. Las diferencias significativas 

encontradas en las bandas de reflectancia del suelo confirmaron las diferencias en entre las 

zonas. Se encontró que las series originales de NDVI son persistentes y multiescala, tal como lo 

han reportado otros trabajos. Con respecto a las propiedades de escalamiento de las series 

residuales del NDVI, estas presentaron exponentes de Hurst significativamente menores a 0.5 

indicando una estructura de ruido. Resultados similares se encontraron para las series de 

anomalías del NDVI, pero con menores propiedades de escalado. 

Estos hallazgos revelan las influencias de las interacciones suelo-clima en la dinámica de la 

serie NDVI para cultivos de cereales de secano en un clima semiárido. 

La evaluación de escenarios de uso y cobertura del suelo (LULC) es un campo de estudio 

relevante para anticipar impactos ambientales futuros a escala de cuenca. A menudo, los 

escenarios LULC y las reglas de transición para la modelización hidrológica se basan en 

criterios de expertos y no tienen en cuenta un enfoque participativo para su definición. En este 

trabajo se analizaron las implicaciones potenciales de tres escenarios LULC informados por 

diversos actores, y sus implicaciones en los componentes del balance hídrico de una cuenca 

subárida de CEA. Los escenarios LULC se definieron a través de un proceso de escenario 

participativo, que involucró a una amplia gama de actores y expertos de la zona de estudio, 

obteniendo tres escenarios locales de usos del suelo contrastantes: ―buscando la 

multifuncionalidad de los espacios rurales‖ (LSH), ―Hacia la especialización del territorio‖ 

(LSP) y ―Continuidad de los modelos territoriales vigentes‖ (LBA). El modelo SWAT se utilizó 

para cuantificar las implicaciones de los recursos hídricos vinculadas al escenario de línea de 

base LULC y los futuros LULC alternativos. Las tres narrativas de escenarios que sustentan los 

escenarios de modelización destacan las diferencias entre las transiciones de reforestación, la 

fragmentación del paisaje, los patrones de cultivo y la especialización agrícola. 
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1 Introduction 

1.1 The hydrological modelling of agrarian semiarid regions 

1.1.1 Research context 

The hydrologic cycle is one of the continuous mass cycles in the Earth-atmosphere system. 

Water that is a substance composed by hydrogen and oxygen, circulates in different physical 

states through the hydrosphere given certain energy potentials (Kleidon et al., 2009). In the 

hydrological cycle, the energy and mass flows are correlated.  Such interaction adds a degree of 

complexity (physical-chemical) that is difficult to measure in time and space (Mook and 

Custodio, 2002; Tian et al., 2016). Moreover, due to the different temporal space scales in 

which the events of the cycle occur, the understanding of continuous process is challenging 

(Fatichi et al., 2016). For this reason, the study of water dynamics in the hydrological cycle is 

fundamental in the hydro-meteorological analysis of the terrestrial landscape. The definition of 

the scale at which scientists and experts want to study the phenomenon is fundamental, since its 

definition allows attributing different water relations: continental, regional or local over time.  

The study of the hydrological cycle, although being a macro cycle at the terrestrial level, 

focuses on most cases in the continental section (Clark et al., 2015). In this context, it is defined 

as the fraction between the hydrosphere and the surface-underground advance of the water 

towards the recharge of seawater, in order to continue a new cycle from the oceans as a 

universally adopted reference point. 

The hydrological cycle at a continental scale, aims to deliver information on water flows in 

large continental platforms. Which in turn are associated with the response of hydrographic 

units of large rivers (Vörösmarty et al., 2000). Regional studies of water flows are of greater 

interest in a country or of a transnational nature when a hydrographic unit is shared by several 

countries. In Spain, an example of this situation are, Miño river, Lima river, Guadiana river, 

Tagus river and Duero river that shares the river basin with Portugal (Caballero, 2019). In 

addition, the regional scale is mostly used in the evaluation of the hydrological cycle, since 

there are conflicts over the flows and demands within the same region. Within this scale it is 

necessary to further detail the processes of the tributary rivers. But only the most concrete 

situations need evaluation at the local level, a situation that has received much attention over the 

last decades (Hrachowitz et al., 2016). The local level is aimed at the study of events or effects 

on very specific water bodies within a tributary river margin or aquifer. 
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The water quality and quantity for the ecosystems are an essential characteristic and its 

understanding plays a transversal role in natural sciences, economics, culture, among others 

(Grizzetti et al., 2016). This relationship has been the subject of multiple studies since the 18th 

century (Duffy, 2017), since anthropic actions have been modifying and impacting this 

important relationship. Man activities have been generating continental scale changes related to 

water resources from the surface, like land-use change for terrestrial part and emissions (gases 

and energy) for the atmospheric phase (Ramanathan et al., 2001). Thus, producing within the 

hydrological cycle significant variations that motivate scientist and researchers their 

understanding and possible control at different scales. The study of the impact of water 

resources management is related to land use dynamics and emissions which are the expression 

of social, economic and cultural aspects of society at different scales (i Canals and de Baan, 

2015; Newbold et al., 2016). 

In the last century, studies of the hydrological cycle at regional and local level have advanced in 

great detail in developed countries, since the economic and social importance at this scale is 

evident (Gober et al., 2017; Karabulut et al., 2016; Singh et al., 2018). For this reason, countries 

and governments have seen the essential need for integrated water resources management at a 

level of detail that strikes the positive impact of the policies generated (Rubiano et al., 2006). To 

this end, they have created institutions responsible for managing the water resource in the 

territory; For example, in Spain there are institutions such as River Basin Authorities (RBA), 

created by the Royal Legislative Decree of July 20, 2001 and by which the consolidated text of 

the water act in Spain was approved. The RBA are the institutions that comply with the 

community policies of the water law, the WFD (Water Framework Directive) 2000/60 / EC. 

Although the water resources management at country level through the RBA has been 

facilitated, the understanding of the relationships of water flows with human activity it‘s very 

diverse when scale increases and decisions become more complex and difficult to manage. In 

Spain, it has been in a learning period (1st and 2nd hydrologic planning cycle). The challenges 

in terms of management by the authorities are diverse and difficult to address (Giorgi et al., 

2015) and land use dynamics include a complex component in time and space given by specific 

water pressures, such as: complying with supply guarantees (Muñoz et al., 2010), economic 

viability in circular economy markets (Brears, 2015), environmental responsibility of ecological 

flows (Willaarts et al., 2014), and the demands of activities such as agriculture and industry (de 

Miguel et al., 2015). Multiple studies related to the water footprint and LCA (Life Analysis 

Cycle) (Muñoz et al., 2010) reveal this for different economic sectors. 

The imbalance between supply and demand is the common denominator in most Spanish basins 

(Del Tánago et al., 2012; Duque et al., 2018; Fernández and Selma, 2004). Even in some cases, 
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such as in agricultural activity, rebound effects have been achieved due to irrigation, increasing 

pressures on the water resources. The modernization of agriculture water use, being this more 

efficient, motivates the expansion of the total irrigated area (Berbel et al., 2015; Khadra and 

Sagardoy, 2019). Irrigated agriculture in Spain, has the tendency to stand out for the 

concentration of much of the water demand in a small area compared to extensive dryland 

agriculture, in part motivated by a management model and water use efficiency (Expósito and 

Berbel, 2017) and motivated by cash crops (Custodio et al., 2016). To cope face this small-scale 

irrigation supply pressure, a group of legal organizations have been established to manage water 

supply to farms, called irrigation communities. From these organizations, the water supply 

pressures were reordered resulting into a water supply net increase, due to the maximization of 

the water efficiency use of the irrigation systems. However, this increase on water supply have 

been attempted to shovel with a tariff scheme during the 1st hydrological cycle, without 

achieving the expected results in terms of guarantee and resource quality (Berbel et al., 2019; 

Pérez-Blanco et al., 2015).  But the situation is accentuating the environmental problem of water 

resources availability. Since the agricultural activity involves not only water supply but also 

generates diffusive pollutant loads that the environment is not capable of degrading. The 

regulation of agricultural practices associated with the CAP (Common Agricultural Policy) must 

be aligned with the WFD, since the change in land use and the practices associated with these 

hedges in a consensual manner provide environmental benefits for water allocation and 

mitigation of water pollution (Salmoral et al., 2017). 

1.1.2 Modelling and water resources assessment 

Starting from the premise that the hydrological cycle is a complex system, which has been 

altered by man, its study requires the use of different tools for its calculation in detail. These 

should allow to chain threads considering lot of variables to establish a balance with a high 

accuracy level. This chain of variables represents different biophysical processes, allows 

evaluating the anthropic changes within the hydrological cycle at basin scale. The most 

important flows within the hydrological cycle (Figure 1) are required to describe system 

dynamics by decomposing its by inputs (precipitation), storage (soil profile and reservoirs) and 

exits (ET, river flow and aquifers recharge), among the main hydrological processes involved 

for any catchment evaluation. 
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Figure 1. Main water balance parameters of the hydrologic cycle in the continental section. 

Water resources assessment and its accuracy depend on data quality, time scale, spatial 

resolution and the purpose of the analysis. The former characteristics are essential for any water 

assessment analysis and its simulation. Hydrological modelling is one of the most frequent tools 

used by scientists and planners for water and land management (Rekolainen et al., 2003). The 

utility of models implies the river routing of hydrological components for water flow, 

sediments, nutrients, pollutants and bacteria along the river network, providing outputs for every 

sub-basin outlet (Krysanova and White, 2015). However, the purpose of the analysis should be 

the key driver to use models for specific contexts although these have not been developed for 

that purpose. This situation forces to assign different weights to the input data involved in 

simulation. Thus, modellers have to use simplifications procedures or schemas to all non-

relevant processes related with the purpose of the analysis to get a complete simulation of 

hydrological cycle. 

As in any modelling exercise, hydrological models assume simplifications of a real-basin 

system and some degree of uncertainty is thus unavoidable. Therefore, the assumed 

simplifications should be considered cautiously, as they could affect the results. For example, if 

water demand by land use is expected, as a result, simplifications of this subject must be fully 

described by the model. 

Towards accurate models there is a need of very precise data, every improvement in data input 

should be translated into model improvements. Hydrological models require accurate data 

related to input water into the systems, regulations and management data, among others. 

However, there is a portion of water cycle in which water is very dynamic in time and space, 

this is the soil. One of the most common simplifications founded in hydrological modelling.  
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1.1.3 Water management of Agricultural Subbasin in Semiarid regions 

The agriculture water consumption is one of the main demands on the global water systems. In 

semiarid regions usually agricultural land location depends on water availability and vested to 

climate and soil agrarian aptitudes. These characteristics in turn follow a behavioral spatial 

order, coupled to sub-basin characteristics. The 3rd order of sub-basins offer a spatial unit in 

which hydrological processes can be analyzed from a local perspective and any plausible 

measure can be generalized for it due to global hydrologically homogeneous characteristics 

(Vieux, 2001). Nevertheless, soil properties, slope and land use serve as sub-clustering tool 

inside each subbasin (Teshager et al., 2016).   

An agricultural sub-basin is defined when the main land cover/use is devoted to agrarian 

production, usually when more than 50% of the total area is cultivated. In semiarid regions, as 

Mediterranean zone the 3rd order of sub-basins presents a wide range of possibilities to use land 

under agricultural schemas. However, only two conditions related to water consumption of 

agricultural land use can be present, rainfed and irrigated condition. Rainfed is the most 

common and extensive condition of agriculture in semiarid regions, especially in Mediterranean 

zone. The dry land agriculture water management is mainly for food production of individual 

farmers or village sized landholdings.  A water source commonly used for annual agriculture 

exploitation is the groundwater, but usually its renewable rate is higher than one year, making 

its use very limited (Pulido-Velazquez et al., 2015; Stigter et al., 2014). The soil conservation in 

dry lands is the primary strategy to follow in agricultural exploitations, since it‘s the main 

determining factor of water dynamics for sustainable agriculture schemas. Some strategies have 

been followed to avoid water losses; one of the most effective and applied in dry lands 

worldwide is the fallow land stage, in which the land is uncultivated for a period of time to store 

water into soil and to mineralize some nutrients. However, fallow management is very site 

specific due to climate, soils, crop rotation schema and tillage machinery manage (Fernandez et 

al., 2008). Several hydrological process such runoff (Ries et al., 2004), soil evaporation (Bennie 

and Hensley, 2001), soil porosity (Nyamadzawo et al., 2008), soil water storage (Lampurlanes 

et al., 2002), among others, are susceptible to vary in time with fallow practice (Moreno et al., 

2010).  

Water availability in the Mediterranean zone has been a subject of research in recent decades, 

and its assessment on a basin scale is a priority to secure water availability for different users, 

including fresh water, industry, agriculture and hydropower in southern Europe (Calbó, 2010; 

Giorgi et al., 2015; Giorgi and Lionello, 2008; Rafael et al., 2010). Agriculture is the major 

water user in Europe, accounting on average for 32% of total freshwater abstractions 

(EUROSTAT, 2017). In southern Europe, agricultural abstractions are greater, accounting for 

an average of 52% of total freshwater abstractions (EUROSTAT, 2017). In sub-arid climates, 
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agricultural water extractions can reach 80%, and often become a source of disputes amount 

water users (European Comission, 2012). The usual implementation of flow regulation 

strategies in these areas to meet increasing water demands, through reservoirs and artificial 

recharge of aquifers, captures the majority of the surface flow of rivers and results in a low flow 

system affecting riverine ecosystems and water availability (Tharme, 2003). 

In Mediterranean watersheds of southern Europe, irrigated agriculture is a common strategy to 

ensure crop production and is considered a key driver in water scarcity (Psomas et al., 2016). 

Because of this, agricultural water demand must be reformulated, based on an integrated land 

use management approach, considering both irrigated and rainfed crops. Specific mitigation and 

adaptation measures for water resources management are needed to reconcile water demands 

from multiple users, as outlined in the River Basin Management Plans (RBMPs) (European 

Comission, 2012; European Environment Agency, 2015). The EU 2020 strategy and the Water 

Framework Directive (WFD) have been promoting several policies for water savings and its 

protection. Additionally, the Program of Measures – PoMs, aims to achieve a satisfactory status 

for surface and groundwater bodies. Several tools, such as remote sensing, are used to identify 

land uses and the application of hydrological models to quantify real and potential water 

demand for agriculture. 

Consequently, a sustainable management vision of water resources at watershed scale requires 

the inclusion of some measures at plot scale. Hence, through modelling, the cumulative effect of 

detailed land operations could be assessed for the watershed water fluxes. Hydrology models 

that include water fluxes related to land use can help decision makers formulate strategies in the 

water-energy-land-food nexus (Dodds and Bartram, 2016; Hoff et al., 2012). Furthermore, the 

water balance model alone is not enough; the environmental situation, the inclusion of 

hydrological dynamics in changing environments (Wang et al., 2016), climate change (Narsimlu 

et al., 2013), land use (Zhao et al., 2016), crop practices (Ullrich and Volk, 2009) and reservoir 

operation schedules (Kalogeropoulos et al., 2011) are also required to achieve an integrated 

water management scheme. 

RBA use water management models as a tool to assess and guarantee water demands. Those 

models serve to manage water fluxes based on predefined and estimated water demands (e.g. 

water supply, irrigation and industry) and the associated regulatory infrastructure. Nevertheless, 

water balance is dynamic in time and space. Hence, to improve water management, more 

variables must be included to achieve a more accurate water balance. The water balance must 

include land use dynamics and cropland practices. The sensitivity of water availability in the 

catchment could be modified due to land use change for future water demands. This is why 

detailed hydrological models can be very useful tools for planning purposes. 
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1.2 Soils and hydrology relationships 

1.2.1 Digital soil maps and data sources 

Soil is one of the main characteristics of a landscape, containing physical, biological, chemical, 

morphological, and mineralogical attributes with 3-D variability (Sigua and Hudnall, 2008). 

Soil is a key element in the water balance, and its properties have a direct impact on the 

discharges of many rivers around the world (Devia et al., 2015). The spatial variation of soils 

depends on soil properties and depth, which are less variable at deeper profiles (Santra et al., 

2008). Nonetheless, in regard to hydrological modelling, the simplification of soil variability 

into soil patterns is a priority to allow the calculation processes at sub-basin scale (Muttiah and 

Wurbs, 2002). However, soil variability is a complex physical process, and its simplification 

can lead to severe misrepresentation of the hydrological behaviour through the soil profile 

(Baveye and Laba, 2015). Soil hydraulic properties are also considered dynamic because they 

are affected by land management practices (Bünemann et al., 2018). Soil moisture controls the 

exchange of water and heat energy in the soil-plant-atmosphere system and its variability 

influences the physical, chemical, and biological spatiotemporal characteristics of soil (Bai et 

al., 2019). All of this could affect the accuracy of hydrological modelling. 

The most common method for the development of detailed soil mapping is based on taxonomic 

group classifications (TSU), which is an expensive and time-consuming approach. 

Traditionally, soil maps for hydrological modelling are based on the TSU approach. In general, 

those maps were developed using the interpretation of aerial photos, available geology maps, 

soil samples from fieldwork and performing laboratory analytics (Tissari et al., 2007). However, 

the inter-spatial variation of properties in the same soil unit was not (Lee Ficklin et al., 2014) 

considered, and in larger units and regional scales, this introduces error forcing modellers to 

make assumptions (Kamali et al., 2017; Neitsch et al., 2005). For this reason, multidimensional 

methods applied for soil clustering could facilitate the model set-up of hydrological models 

(GESSLER et al., 1995). 

Soil datasets for hydrological modelling are usually selected and arranged using different 

geostatistical methods, such as kriging (Matheron, 1962) and self-organizing maps 

(SOM)(Kohonen, 1982). Kriging represents one of the most commonly used tools since the late 

1970s for representing soil properties in maps and predicting attribute values for non-sampled 

locations (Asa, 2012; Baveye and Laba, 2015; Goovaerts, 1999). Additionally, SOM is an 

artificial neural network that can be used for clustering datasets and extracting the dimensional 

values (Vesanto and Alhoniemi, 2000). The SOM, alone or with other techniques (Rivera et al., 

2015), is also an ideal tool for visualizing multidimensional datasets in maps in the exploratory 

phase (Merdun, 2011). 
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1.2.2 Hydrologic soil properties 

At global scale, little attention has been given to soil properties for hydrological modelling. 

Especially due to high costs for mapping exhaustively the soil properties at precise scales to get 

maps at resolution higher than 1:100.000. This is especially true when harmonizing soil maps 

for hydrology modelling at 1st to 3rd basin order.  

Among a pull of soil properties that interact at the same time to develop water fluxes over 

basins, there are some of them too sensitive and attributable to hydrological processes. Several 

studies report sensitivity on the following soil properties for hydrology modelling: 

1. Infiltration, water infiltration into soils occurs during and after storms, allowing soil 

moisture homogenizes and water transfer in depth. Infiltration is a process in which 

water mass transfer is function of soil moisture condition and  its rate is high when soil 

are dry and slow down once soils store water until the water flux reach stable state, this 

former state is more known as basal infiltration or hydraulic conductivity.   

2. Soil water storage, is a key water volume into the water cycle, it could be considered 

as a storage volume for short term. Joint to this water that is stored into soils reach an 

ecological function of water regulation to stream network configuration, atmosphere 

interchange and percolation transition to groundwater configuration.  

3. Soil depth, is one of the most important soil characteristic due of capacity to drive the 

time for the different flow configuration, their spatial distribution is very scarce known 

with high precision in watershed. Due of this limitation most of hydrological fluxes are 

susceptible to large errors in their calculation. 

4. Aquifer interaction, most of the hydrologic models use aquifer interaction to 

compensate water balance trough revaporation factor to compensates ET and deep 

aquifer recharge as a water loos.   

5. Water table and percolation, these two variables are very important in compensate 

watershed water balance due to its dynamics. However, most of the water table 

fluctuations are not considered or measured to hydrological modelling, some wells are 

considered for hydrogeological studies and for surface assessment remains in a 

secondary plane as water flows difference.  

Taking into account that the soil plays an important role in the accuracy of water fluxes most of 

the soil properties area known at fines scales and its understanding can be useful in water 

budget at local hydrological analysis. 
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1.3 Effect of Land Use Land Cover in hydrology dynamics 

1.3.1 Rainfed winter cereals 

Cereals have been one of the most representative crops in Iberian steppes since early 90‘s 

(Rubalcaba and Guillén, 1997). This is the case of the left margin of Duero‘s river, in which the 

barley and winter wheat are widely extended in the arable land. In part, because of the cereal-

steppes program supported from Common Agricultural Policy (CAP) of the EU during 90s and 

because of soil suitability and weather regime (Oñate et al., 2007). Besides, the weather regime 

around 400-600 mm/year, sandy soils and driest summer are factors that fits with wheat and 

barley physiology reaching extensive profit from land use, in the Mediterranean cereal 

production systems.  

Between barley and wheat, barley is a dominant crop in the area (Gutiérrez García et al., 2016). 

The planted varieties of barley at the end of the fall season, facilitates the crop management and 

cultivation success (Pswarayi et al., 2008). This is because of adequate breaking seed dormancy 

period, soil moisture conditions for optimal germination, temperatures ranges are ideal for 

winter planting and photoperiod adaptation of the crop (Lister et al., 2009). During the crop 

season, the precipitation during fall-winter period is around 150 to 200mm (i.e., October, 

November, December and January), this is essential in terms of soil water storage at the 

beginning of the crop season (i.e., germination) (Igartua Arregui et al., 2015). In the left margin 

of Duero‘s river and in in sandy soils, the soil water storage in early spring is fundamental in 

tillering due to small precipitation rates and their associated reduced ET rates due to weather 

characteristics. This set of factors have favoured that wheat and barley have well adapted to 

these areas. 

Cereals are involved in almost all rainfed annual crop rotation schemas in the area (Rivas-

Tabares et al., 2019a). However, there are some extensive practices in which barley, fallow, and 

wheat, in distinct combinations, the crop rotation sequences in the rainfed agricultural area. 

Increasingly, the reduction of long-term fallow is suppressed from the crop rotation sequence 

(Poulsen et al., 1998), increasing pressures over soil fertility and availability of water resources 

for this farming system. This resulting that these three to five years monoculture crop sequences 

are unsustainable in mid and long-term. 

The analysis of long-term monoculture crop sequences from Earth Observations (EO) of the 

soil-plant-atmosphere system can provide the insights of crop systems trends to investigate the 

spatial and temporal specific interactions of soil and climate in vegetation dynamics. 
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1.3.2 Vegetation indexes as a measure of spatial variability 

In the Spanish Mediterranean environments, rainfed cereal crops are grown mainly in the arid 

and semiarid areas, where dryland farming is of renewed interest in the view of sustainability 

(Lelièvre et al., 2008; Perniola et al., 2015). The main characteristics of the Mediterranean-

climatic regions are cool wet winters and hot dry summers. The rainfall pattern coupled with the 

high rates of evaporation during summer, result in water being an important limitation to 

agricultural productivity. Some observations with rainfed cereal monoculture sequences have 

been identified in north-central Spain cereal steppes (Rivas-Tabares et al., 2019b). These 

monoculture sequences represent an issue for soil degradation and basin water balance in this 

area. Therefore, a set of combined processes occurs at different times and scales creating 

complex dynamics during the crop development (Wu and David, 2002). 

Monitoring crop development in agricultural zones is a challenging task with several 

agronomical applications (Xue and Su, 2017). Satellite-derived vegetation indexes (VIs) are 

measures related to surface reflectance commonly used to characterize the spatial and temporal 

vegetation dynamics (Joiner et al., 2018; Xue and Su, 2017). Remote sensing provides temporal 

and spatial patterns of agroecosystem change and has been used to estimate the biophysical 

characteristics of crops and grasslands (Nagy et al., 2018; Schultz et al., 2016). The variation in 

climatic conditions (i.e., seasonal and inter-annual changes) allows a wide spectrum of dynamic 

characteristics (Lazaro et al., 2001; Vicente-Serrano, 2007). In addition, soils in which 

vegetation has been developed are also an important part to understand VIs response 

(Mahmoudabadi et al., 2017; Wang et al., 2001; Xu et al., 2015a). The analysis of these series 

can serve to describe the dynamics driven by soil and climate characteristics. Normalized 

difference vegetative index (NDVI) is commonly used in this type of evaluation  (Moges et al., 

2005; Numata et al., 2007; Escribano Rodríguez et al., 2015). The NDVI long-term series from 

rainfed cereal monoculture sequences have not been studied, although it is an important factor 

of soil degradation in semiarid areas (Hernanz et al., 2002; Mao et al., 2012; Wu et al., 2017).  

NDVI series have been studied in different ways applying several analyses. One of these is 

based on the persistent character, or long-term memory, of a series studying the time scaling of 

its variance through Hurst index. One of the first works applying this type of analysis on NDVI 

series can be found in (Wang et al., 2005).  In this line, (Peng et al., 2012) quantified the 

consistency of vegetation dynamic trends using Hurst index, sometimes named as Hurst 

exponent too.  These works and later several ones (Jiang et al., 2015; Ndayisaba et al., 2016; 

Tong et al., 2018; Hott et al., 2019; Liu et al., 2019 among others) have used the Rescaled 

Range Analysis (R/S analysis) method to estimate the Hurst index of NDVI series. Hurst index 

is one of the Generalized Hurst indexes extracted applying the Generalised Structure Function 

(GSF) widely used in the turbulence context (Davis et al., 1994).  GSF focuses on the absolute 
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values of the differences that occur at different time scales, and it represents an excellent tool to 

study the dynamic of a series from a multiscaling point of view. Recently, several works have 

approached the study of NDVI series using multiscaling analysis (Ba et al., 2020; Li et al., 

2017).  

1.3.3 Hydrologic response to land cover/use 

The land use and land change (LULC) is one of the most important drivers of environmental 

degradation, and responsible for much of the ongoing soil erosion, land degradation, 

biodiversity loss, water pollution, and agricultural abandonment, (Navarro and Pereira, 2015; 

Quintas-Soriano et al., 2016; Smiraglia et al., 2016). LULC is a global concern, with strong 

implications in the annual water balance, both for surface and groundwater resources (Schilling 

et al., 2008; Yilmaz et al., 2019). Changes in the vegetation cover and land use (LU) of a basin 

can have profound effects in the hydrology of the catchment (i.e. how the water is partitioned, 

and thus the proportion that is evapotranspired and/or flows as runoff) as well as the socio-

economic demands that arise with LULC (e.g. irrigation development).  

Nowadays, LULC is gaining importance for integrated water management and planning because 

of its effect on the water balance. Long term LULC effects are little studied across different 

scales from plot to national. Multipurpose modelling is presented as an alternative to attend the 

agricultural water demands and attempt to mitigate land degradation (Bangash et al., 2013; 

Schilling et al., 2008). However, the socio-economic aspects (i.e. more cash and jobs per drop) 

tend to be more important in water resources planning (Lambin et al., 2001; Kumar and Singh, 

2005), hindering the policy effectiveness when it comes to the protection of  water bodies.  

There are many different expressions of LULC, including deforestation, afforestation, urban 

development, agricultural intensification-extensification processes, farmland abandonment, etc. 

All of them are characterized by complex interactions between human behavior, decision-

makers and their biophysical environment (Parker et al., 2008). Despite these relations, 

uncontrolled LULC changes can occur because of individual decision, as response to the rural 

exodus and market trends. Agricultural activities, such as LULC changes, are also very dynamic 

in space, and its evaluation is challenging due to all the biophysical processes and human 

interactions that are involved (Acevedo et al., 2008; Opršal et al., 2016). The multiple 

connections between the elements and processes (i.e. atmosphere-water-soil-plant and human 

alterations) are subject of advanced research in recent time (Troch et al., 2009; Sofia and 

Tarolli, 2017).  

Crop choices and rotations are significant land dynamic aspects to be considered when 

evaluating the environmental impacts of agricultural activities (Franzluebbers et al., 2011; 

Lemaire et al., 2015). Such processes are driven by farmer‘s decision, although usually 
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influenced by policies and regulations, market trends and prices, and by technical advice 

(Galán-Martín et al., 2015; Louhichi et al., 2017). Plot boundaries are also dynamic, suffering 

fragmentation and remerging processes (King and Burton, 1982; Botey Fullat, 2009) hindering 

the data acquisition and management of historic plot data. The knowledge about crop rotations 

patterns at medium and large scales (spatial and temporal) is still being a subject of research 

(Schönhart et al., 2011), and some of them are estimated through remote sensing and modelling 

(Qiu et al., 2003; Ray et al., 2012).  

Integrating detailed crop rotations in hydrological assessment suppose adding complexity to the 

modelling exercise. This is especially true because most of hydrological models do not account 

this level of details for water balance calculations, and therefore tend to simplify important 

processes (e.g., phenology and operation scheduling) that largely influence the water budget. 

Implementing multiple LU‘s and site-specific farming in the same plot difficult simulation 

process (Jones et al., 2017). This hinders the understanding of the hydrological responses to the 

combined biophysical processes (Hively et al., 2009; Lee et al., 2016),  moving to an advanced 

complex system in need of big data (Hutchins et al., 2017; Shafiee et al., 2018) and machine 

learning (Hosseini and Mahjouri, 2016) for modelling.  

1.3.4 Land Use Land Change – LULC modelling scenarios 

Land change modelling scenarios is an approach recently used to create the bridge between 

administrative planning LU perspective and real transfer to local LU context, in which decisions 

take place. Such approach also allows translating and simulating through modelling tools, a 

more accurate water balance components quantification based on a participatory methodology. 

The main purpose of participatory scenarios is to translating narrative scenarios into quantitative 

assessment of the LU scenario, as well as to assess the stakeholder perception for plausible 

future use of land at the local context showing the contrasting results to current LU patterns.  

However, detailed crop rotation data are limited and the real impact assessment on the natural 

resources (positive or negative) at larger scales is still poorly understood (Aalders and 

Aitkenhead, 2006; Jiménez et al., 2016). Modelling approaches are usually the most common 

tool used to understand and comprehend simultaneous processes of spatial development in time 

across different LULC scenarios (Veldkamp and Verburg, 2004; Booth et al., 2016). The 

comparison of different spatial land configurations during a simulation period, provide the 

environmental responses of different LULC under similar and constant weather regime 

(Memarian et al., 2014; Singh et al., 2015). 

Improving the representation within models of complex processes like crop rotations and other 

land management decisions is important to make better projections and understand the 

implications of different land use scenarios. Lack of data and local knowledge is often also an 
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important barrier. To overcome these barriers and advance in the development of more credible 

projections and/or scenarios requires engaging with stakeholders and experts to better 

understand the local realities. Many authors (Kok and van Vliet, 2011; Malek and Boerboom, 

2015), have developed successful participatory scenario approaches that are able to better 

integrate in simulation exercises the local context, in which decision making and stakeholder 

choices take place, as well as the social and environmental regulatory framework at sub-basin 

scale. Applied to the context of European agricultural scenarios, the works of Hagemann et al., 

2019; Karner et al., 2019  have developed and applied a participatory scenario approach to 

assess the future agricultural land use scenarios in contrasting European rural landscapes. 

1.4 Research objective 

Nowadays, the measures for water resources management in semiarid regions at individual 

water body has to be quantitative based, accurate and participative. For this purpose, the use of 

hydrological modelling as tool for decision support is crucial to manage water bodies in a 

sustainable way, especially all related to agricultural water management as the one with higher 

water demand. The increase in computer processing capacity, the use of inputs from remote 

sensing, and big data improve hydrological model accuracy when predicting or replicating water 

fluxes. However, the availability of input data for hydrological models, especially its temporal 

and spatial resolution, as well as the intrinsic variability of those variables, limits the application 

of the results for decision making. For this reason, new modelling approaches have been 

developed to take advantage of available data and mathematical methods (Scull et al., 2003; 

Szidarovszky, 1983) to improve the model accuracy and carry out a multi-objective assessment 

of the hydrologic cycle at finer scales (Gupta et al., 1998; Xu et al., 2015b). 

The specific research questions of the thesis are: 

 Are there any strategies to implement for input data that improve hydrological 

modelling? 

 Could complimentary soil data sources as soil properties used in hydrological modelling 

to improve water balance accuracy? 

 Is it possible to assess the effect of land use and crop rotation on the major components 

of the water balance in agrarian basins? 

The hypothesis of this thesis is: 

“Every effort to improve input data, of detailed hydrological models, facilitates calibration 

and validation procedures, and providing accurate results of water balance components 

assessment in semiarid agrarian sub-basins. These improvements can be used, as a 

compliment, to the current management tools from River Basins Authorities, for the for 

sustainable water management in the near future” 
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In order to test the former hypothesis, the main objective of this thesis is: 

“Evaluate the spatial and temporal variations in the water resources of semiarid basins 

through novel improvements of input data, increasing the precision of the main components 

of the water balance in intermediate sub-basins without direct measurements using the 

SWAT hydrological model”. 

In order to achieve this goal, the following secondary objectives were considered: 

I. Test alternative methods to improve actual data soil, weather input data for 

hydrological modelling to provide accurate results of hydrologic cycle parameters.  

II.  Analyse and describes the effect on the water balance components because of spatial 

heterogeneity of land-use change by using remote sensing data series into the 

SWAT model.  

III. Probe an alternative hydrological modelling method with SWAT for the assessment 

of water demands in the Duero river basin, incorporating land-use and agricultural 

management into the modelling.  

IV. Analyse and describes the hydrological effects because of the change in land-use in 

relation to the crucial components of the water balance. 

The results obtained from this work are important for different actors involved with water 

resources management, especially for: 1) the technicians related to the management and 

allocation of demands at the river basin level and 2) local users, since they allow answering the 

questions associated with variability in supply and demand. However, the present work is a 

generic methodological guide for the Mediterranean area, which allows evaluating by means of 

SWAT modelling the effects on HR from the change in land use foreseen in a participatory 

exercise. 

The applied methodology and the improvements made to the model can contribute as a 

complementary water resources management strategy used by river basin authorities in the 

allocation of actual and future water demands. The model developed here can not only be the 

basis for future hydrological research, but also for environmental management projects, as well 

as providing the basis for an integrated concept of water legislation related to land use. 

1.5 Related publications 

This doctoral thesis was developed within the framework of the T.A.L.E. project (Towards 

multifunctional agricultural landscapes in Europe: Assessing and governing synergies between 
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2 Methodology 

The methodology applied in this research is the result of combining several methods to address 

the stated objectives detailed in Chapter one. The interest is to scope hydrological modelling 

from its conception, enhancing the input data through additional data treatments. This with the 

aim to foster the importance of it in the accuracy water balance results on decision making in 

water management of agrarian semiarid watersheds.  

2.1 Self-Organizing Map of soil properties in the context of hydrological 

modelling  

2.1.1 Study Area  

The Adaja watershed is a tributary subbasin of Duero River and defined as a second order 

watershed covering an approximate area of 5,263 km2, comprising two mains tributaries, the 

Adaja river (left) and Eresma river (right) (see Figure 2). The Adaja watershed presents a 

regulated stream network in the highlands. To cover water demands, large quantities are stored 

in reservoirs providing 26.81 hm3 and 117.06 hm3 of fresh and irrigation water, respectively. 

Most of those demands are located in the watershed midlands and lowlands (CHD, 2015). The 

catchment is gauged at Valdestillas flow gauge (VFG) covering the 98.6% of the total drainage 

area and daily measurement considered for modelling were selected from 2004 to 2014. This 

subbasin presents an elevation range between 670–2,426 m., because of this and the landscape 

variation  a proposed division in three parts (lowlands, midland and uplands) is a reasonable 

approach to assess water balance components of the Cega-Eresma-Adaja system (Rivas-Tabares 

et al., 2019b). The land use in the Adaja river subbasin is dominated by rainfed agriculture 

(56.54%), forest (22.27%), urban and transportation (11.22%), shrubs and pastures (7.92%), 

irrigated crops (1.94%), and water (0.1%) (see Figure 3). 
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Figure 2. Study area location indicating the gauging station Valdestillas (VFG), subbasin distribution and 

Adaja river watershed segmentation in North central Spain. 

 

Figure 3. Land Use composition of Adaja river watershed and section division (lowlands, midlands and 

highlands). 
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The Adaja watershed contributes with an average discharge over Duero River with 407 hm3yr-1 

calculated in short flow series reference. The total water demand (153.94 hm3yr-1) of the study 

area is attributable to five main sectors: (1) Agriculture (76%) 117.06 hm3yr-1 (2) Freshwater 

(17.4%) 26.81 hm3yr-1 (3) Livestock (4.6%) 7.10 hm3yr‘-1, (4) Industrial (1.4%) 2.08 hm3yr-1 and 

(5) recreational (0.6%) 0.89 hm3yr-1 (CHD, 2015). Water abstraction to supply demand comes 

from surface and groundwater bodies, denoting that groundwater abstraction is the main source 

of water supply when rivers run with low flow during the spring-summer period. 

The predominant soils groups are Cambisols (35.9%), Luvisols (31.4%), Leptosols (12.7%), 

Arenosols (9.8%), Fluvisols (4.9%), Regosols (1.9%), Solonchack (1.7%), Solonetz (1.7%) and 

Gleysol (0.1%) (Llera, David A. Nafría et al., 2013).  

2.1.2 Soil map properties sources for hydrological modelling 

Two different soil data sources were used to obtain three soils mapping and setting up the 

hydrological model. First, a Harmonized World Soil data base from FAO soil map at 

1:1,000,000 scale (HWSD) comprising all soil properties needed for hydrological modelling, 

including soil depth (Figure 4A). Data of soil properties are shown in Annex 1 in supplementary 

material. 

 

Figure 4. Soils maps of Adaja river watershed from (A) Harmonized World Soil Database - HWSD at 

1:1,000,000 (low resolution)  and (B) Agricultural Technological Institute of Castilla and Leon – ITACyL 

at 1:400,000 scale  (mid resolution). 
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Soils maps of Adaja river watershed from (A) Harmonized World Soil Database - HWSD at 1:1,000,000 

(low resolution)  and (B) Agricultural Technological Institute of Castilla and Leon – ITACyL at 

1:400,000 scale  (mid resolution). 

Second, a database of  407 soil samples of the watershed from different sources (Llera, David 

A. Nafría et al., 2013) was used to create a griding of 100x100 m resolution starting from a 

sampling density of approximately 25x25 m. A Kriging method (Matheron, 1963; Wagner et al., 

2012) was applied to the original set contained 11 soil variables related to physical and chemical 

properties, see supplementary material Annex 2. The soil variables grid was used to obtain the 

other two soil mapping. Soil depth wasn‘t included in this set. 

Based on the taxonomic soil units (TSU) of ITACyL, at 1:400,000 scale (Figure 4B), the 

average of soil variable grid belonging to the same soil unit was applied to obtain a soil 

mapping of properties named as TSU. At this point, we would like to bring up that, commonly, 

soil maps for hydrological modelling set-up are based on the taxonomic approach. In general, 

those maps were developed using a traditional interpretation of aerial photos, available geology 

maps, soil samples from field work and performing of laboratory analytics (Tissari et al., 2007). 

The taxonomic soil units‘ maps sometimes include additional information about specific soil 

properties, although this is not the case. However, the inter-spatial variation of properties in the 

same soil unit is not considered (Lee Ficklin et al., 2014) and in larger units and regional scales 

this introduce an error forcing to modelers to make some assumptions (Kamali et al., 2017) 

(Neitsch et al., 2005). 

Finally, applying a self-organizing map (SOM) method on the soil variables grid, the third soil 

map was obtained (SOMM). The SOM method is described in detail in section 2.1.3.  

In the runoff's case estimation, the SCS method (Hjelmfelt, 1991) is widely used. In this case, 

information on the hydrologic soil group for runoff and soil depth are indispensables for routing 

the water flows. For the three maps, the hydrological soil groups were assigned using lookup 

tables of the SCS (Hjelmfelt, 1991).  

The soil depth for Adaja watershed in HWSD was already included in the dataset, meanwhile 

the other two maps didn‘t contain that information. The soil depth for TSU and SOMM was 

conducted through the implementation of the TOPMODEL approach (Saulnier et al., 1997) and 

watershed segmentation (Pelletier and Rasmussen, 2009). The TOPMODEL model uses a 

decreasing linear function of the topographic slope based on the DEM. An adaptation of 

Saulniers‘ equation of TOPMODEL was performed due of watershed slope heterogeneity and 

local geomorphological characteristics, this include spatial and depth restrictions. Firstly, the 

watershed was segmented in three parts (low, medium and highlands) to establish for each the 
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restriction values of soil depth for local minimum and maximum values (Rivas-Tabares et al., 

2019b). Secondly, the land cover was used to identify the minimum soil depth understood as 

effective soil depth for root development, because of the sensitivity to this parameter affecting 

the hydrology dynamics and plant growth (Castro-Franco et al., 2017).  The covers considered 

were cropland, forest and bare soil; and the maximum root depth were assigned from the 

averages of crops and forest from literature references (Canadell et al., 1996; Padilla and 

Pugnaire, 2007). The summary of soil depth restrictions is shown in Annex 3 in the 

supplementary material. 

The resulting soil depth map was spatially compared to the available data of 8 complete soil pits 

that represent the main soil pedogenesis classes of the area and satisfactory validated. This soil 

profiles were part of the taxonomic soil map documentation at 1:400.000 scale (Llera, David A. 

Nafría et al., 2013). Moreover, the resulting soil depths do not exceed soil depth values of pits. 

A reclassification of soil depth was performed to avoid increasing the number of HRUs with 

tiny soil depth differences. The classes were defined based on spatial variability for each 

watershed segment and limited to four main depth classes (300, 600, 900, and 1500 mm) see 

supplementary material Annex 4. 

2.1.3 The Self-Organizing Map strategy 

A SOM is a technique used to represent and visualize structures of high-dimensional data based 

on artificial neural network of any continuous function (Kohonen, 2001). It is largely 

implemented in sciences facilitating interpretation of some physical phenomenon. The 

algorithm consists in organizing l neurons on a regular grid. For this, a vector is defined with n 

+ m weighted dimension m= (m1…mn, mn+1…mn+m), then those are assigned for each neuron. 

The neuron l is defined by n= dim(x) and m=dim(y) dimension arrays, where n denote the 

dimension of the input data set (in this case the soil properties) and m the dimension of the 

output (number of soil clusters or soil units). The l neurons are connected to the adjacent 

neurons by a neighborhood relationship. This characteristic defines the cluster structure of the 

SOM, Figure 5. This process is based on training samples by following an iterative process. 

Each iteration k is initialized by an unsupervised training of sample vector XSOM. This training 

iterates the weight vector mi in the domain of the output, in this case was defined in 3 ≥ l ≤ 50 

clusters to reduce soil units that consequently reduce the number of HRUs compared to the 

taxonomic soils map with 196 soil units at 1:400.000 scale. 
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Figure 5. Structure of Self-organizing maps (SOM) to create soil units for SWAT hydrological 

modelling. The clusters of neurones are represented by pixels with the same size of input data. 

The training starts by initializing the SOM when selecting small random values for the initial 

weight vectors mi. A typical and reasonable way to achieve faster convergence of the best 

matching unit is to initialize the mi vector with the greatest principal component eigenvalues of 

the data (Kohonen, 2001). Once the weights are settled in the vector, the iteration k is defined by 

choosing randomly one vector XSOM(k) for input data and computing the Euclidean distance     

to the weight vectors of the SOM. 

   ‖    ( )    ‖   ∑ (    
 ( )    

 )
    

        (1) 

The neuron that present the smallest distance    to XSOM(k) is the best matching unit (BMU) of 

X or the ‗winning neuron‘. This neuron is the map element C, represented by the weight vector 

mc(k). 

‖    ( )    ( )‖      *(    ( )    )+                 (2) 

The following iterations are completed by updating the weight vectors until the BMU is closer 

to the input vector. The rule to define the updating the weight vector is defined by (a) the 

operation (XSOM(k) – mi(k)), (b) the size of the neighborhood function hci which decrease 

monotonically to zero with k and the distance of the wining neuron and (c) a learning rate factor 

αs(k)  which gradually lowers the height of the neighborhood function as the iteration advances.  

  (   )       ( )   ( ),    ( )    ( )-    (3) 

The function hci is typically represented by a Gaussian function 

   ( )     . 
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In which the expression ‖     ‖
  is the distance between the map units c and i on the map 

grid. The   variable represents the neighborhood radius at iteration k and   is decreasing 

monotically during the iterations with k. The value of   is not explicit required (Kohonen, 
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2001).  It is recommended to initialize the iteration with   ( )    with values near to 1 and 

then increasing the number of training steps k. The vector XSOM is the training data set from the 

previous Kriging method with the eleven main soil properties, described in section 2.1.2. 

For this study, the R package Kohonen was implemented to obtain the soil units through the 

SOM method (Wehrens and Buydens, 2007). However, the number of cluster will be optimal 

and some performance metrics are need to ensure an optimal clusters number (Charrad et al., 

2014; Khanchouch et al., 2015).  

2.1.4 The Self-Organizing Maps performance evaluation 

The SOM method provides a map in which the clusters are clearly defined. However, an 

optimal number of clusters are desirable to reduce even more the complexity of soil properties 

without losing the soil representativeness of the property into the cluster. For this, this algorithm 

uses the Davies Boulding index for clustering by using an unsupervised classification learning 

technique to obtain homogeneous partitions of the object while promoting the heterogeneity 

between partitions (Khanchouch et al., 2013). 

The Davies Bouldin DB Index (Davies and Bouldin, 1979) is characterized by the definition of 

the compactness and how well are separated the clusters. The DB index is given by the 

expression, 

   
 

 
∑     
         {

 (  )  (  )

 (     )
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where variable c defines the number of clusters, i and j denote the clusters,  (  ) and  (  ) are 

the distances between all objects in clusters i and j to their respective centroids, and  (     ) is 

the distance between centroids. Smaller values of DB index show better clustering quality 

(Fonseka and Alahakoon, 2010; Khanchouch et al., 2013). Once the DB index is defined for a 

range of clustering domain, a graph that include the lower mean distance of clustering process is 

reached, indicates that the minimum compromise of those values is an optimal solution for 

number of clusters. 

2.2 Weather Data 

The weather data were collected from 47 weather stations of AEMET -Meteorological Agency 

of Spain. The weather variables and their spatial assignation to sub-basins were reformulated 

considering the centroids of the resulting boundaries of 79 sub-basins from DEM processing 

and implementing weighted proportion of each variable using the Thiessen Polygon method 

TPM (Rivas-Tabares et al., 2019b). 
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2.3 Hydrological Modelling with SWAT 

The SWAT model (Arnold et al., 1998) is a spatial distributed hydrological model, widely used 

for land management and water resources assessment in very complex watersheds.  For this, 

SWAT use a disaggregation strategy based on two criteria, (i) sub-basins discretization based on 

DEM (topographic criteria) and (ii) the Hydrologic Response Units - HRUs discretization that is 

based on soil properties, land use and slope classes. Thereby, the sub-basins are aggregated with 

several HRUs. The calculation unit for SWAT is attributable to this set of units for all the 

biophysical modeled processes. 

The SWAT model is based on a routines tree that provides a solution of the water balance 

equation. These routines put up together the hydrological solution for evapotranspiration, 

surface runoff, soil infiltration and subsurface runoff. Model could be more precise in each 

routine including sediment, chemical and crop yields depending on the input data setup. Soil is 

very complex and SWAT model could be settled up to 10 soil layers. Water flux through the 

soil is based on the saturated capacity of each layer, once the saturation state is achieved, the 

water flux is coupled as water input of next soil layer but if the following layer in depth is 

saturated, lateral runoff occurs. If last layer is reached, water flux composes the aquifers 

recharge volume. Deep aquifer is considered as a lost in water balance, but shallow aquifer 

overfilling is called return flow from shallow aquifer; this volume is routed directly to the 

mainstream of each subbasin according to each case. 

The runoff is one of the main processes assessed by the SWAT model, this routine is based on 

the SCS curve number method (Hjelmfelt, 1991), presenting a sensitive factor related with the 

curve number CN assignation which is in turn related with antecedent moisture condition of 

soil. The method was developed from experimental abstraction as a non-linear function between 

rainfall-runoff processes. The definition of three main routine component (1) runoff 

interception, (2) soil storage variation and (3) infiltrated water in the porous media, expressed as 

potentials, solve the relation for routing water through the soils of the watershed. 

The evapotranspiration ET process can be selected using Presley Taylor method or Penmam-

Monteith method. Some differences can be identified by switching the methods but the most 

universal accepted for modelling purposes with SWAT is the Penman-Monteith method due of 

the capacity of worldwide accuracy and approximation to the real evapotranspiration measured 

in different sites and watersheds. 

The routing into SWAT is completed once all the water fluxes are calculated and routed into the 

main channel of each subbasin. In turn, it‘s routed into the river network. The SWAT tool is a 

model still more used for surface calculations due of the complexity of soils and geology of 
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watersheds. The model is often used for estimating the aquifer recharge as a system lost that 

could provide an idea of the system, but more precise coupling models are required for 

estimating the deep aquifer recharge rates. 

2.3.1 Calibration-Validation 

SWAT model as a distributed model for hydrology assessment requires a calibration and 

validation process. For this, the HRUs need to reach a moisture condition to initialize the water 

fluxes estimation. One year at daily time step is a reasonable warming-up period prior 

calibration and validation processes in sandy soils (Kim et al., 2018), a predominant 

characteristic of Adaja watershed. 

Calibration and validation is conducted through the implementation of the Sequential 

Uncertainty Fitting SUFI-2 algorithm of the software package SWAT-CUP (Abbaspour, 2011). 

SUFI-2 is a powerful automatic tool for SWAT model calibration and validation processes due 

of facility of implementing single or multi-parameter calibration. The iterative algorithm 

captures most of measured data within the 95% prediction of uncertainty envelope (95PPU) 

(Abbaspour, 2013). Modeler usually defines a set of parameters from a literature review of 

similar watersheds or with similar conditions, in this case the parameter area showed in Table 

A2 in the supplementary material. However, it‘s advisable to define a valid range for the 

calibration parameters of the case study. The SUFI-2 algorithm is an iterative process that 

defines the parameter value over the initial range converging near to the measures through 300-

1000 simulations. However, a good correlation between the selected value of the parameters and 

the measures could provide an erratic model but well represented by model performance metrics 

(Abbaspour et al., 2004). 

2.3.2 Water balance 

The SWAT model provides detailed information about main water fluxes at HRU and subbasin 

scale. In the hydrological cycle, all those fluxes are interconnected and provide different 

response to soil, surface roughness and ground state relations, Figure 6. The balance of water 

cycle in the mainstream follows the given mass equation. 

                     (6) 

Where    (6) is the surface runoff, ET is evapotranspiration,     is the change of soil 

moisture, and     is the change in groundwater storage. The terms   ,    , and     are 

influenced by soil properties, surface roughness and slope. This is also according with the HRU 

definition but appointed by precipitation behavior as the main water input into the system. 
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Figure 6. Hydrologic model system representing watershed fluxes: A) main fluxes at basin scale, B) 

detailed fluxes at soil profile scale. 

Water balance is also related with anthropogenic use of soil for vegetation growth, nutrient 

cycling and for different ecosystem services. Water processes involved in hydrological cycle 

(runoff, evapotranspiration, soil infiltration and aquifer recharge) are sensitive in sub-arid 

catchments due of small perturbations of input water into the system in monthly or daily time 

step. In Adaja watershed, the representation of each of hydrological cycle components could be 

better analyzed from a watershed segmentation (lowlands, midlands and highlands) (Rivas-

Tabares et al., 2019b). 

2.3.3 Self-organizing maps in Cega-Eresma-Adaja 

Digital soil mapping for Cega-Eresma-Adaja management system was also integrated for 

modelling evaluation. Cega river watershed was added to previous map described in section 

2.1.3, using the same methodology. A soil taxonomic unit map is currently available in the area 

with a scale of 1:400,000 (Figure 7). However, this map does not include soil properties. A 

common practice is to use pedotransfer functions to assign the soil properties required to the 

taxonomic units, affecting the uncertainty of the model (Seeger, 2007). To reduce it, a soil map 

was created using data from a soil sample database with 11 soil properties (clay percentage, 

sand percentage, silt percentage, moist soil albedo, available water content, wilting point, field 

capacity, saturated hydraulic capacity, bulk density, organic carbon content and organic content 

percentage) and the Kohonen in R tool (Wehrens and Buydens, 2007). Soil units in hydrology 
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modelling are directly related with the total number of calculation units (i.e., subbasins, 

Hydrologic Response Units HRUs, etc.). This tool reduces the number of soil units without 

losing spatial information. The Kohonen tool is based on the self-organising maps (SOMs) 

approach to delimit soil clusters. Each cluster defines a soil unit with a low variability of 

physical properties. Spatial variation of each soil parameter is complex in each unit, and 

different soil map scale analysis is required (Lin et al., 2005). The resulting clusters do not 

directly correspond to the taxonomic units, although they are interlinked. A close relationship 

does not apply in this context, (Figure 7). On the one hand, SOM represents clustering of soil 

properties and on the other, the taxonomy unit represents soil pedogenesis. However, spatial 

variability of soils properties is more complex. The similar spatial distribution of clusters and 

taxonomic units is suitable. Therefore, this comparison serves to validate the SOM soils map. 

 

Figure 7. Soil and land use classifications in Cega-Eresma-Adaja (CEA) watershed, colors show the soil 

taxonomy relationship between the different scales. (A) FAO (HWSD) Soil map at scale 1:1,000,000 (14 

soil units), (B) Soils map of CyL at scale 1:400,000 (291 soil units), (C) ITACyL soil samples sites, (D) 

SOM soil clusters (16 clusters) with depth differentiation (92 soil units) at 20m resolution. 
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2.4 Evaluation of water availability in sub-arid a Mediterranean watershed 

2.4.1 Study area 

The Cega-Eresma-Adaja system (CEA) is located in the central north of the Iberian Peninsula, 

and consists of two adjacent sub-basins that are jointly defined as a hydrological management 

system by the Duero River Basin Authority (DRBA), Figure 8. The stream network defined by 

the Eresma and Adaja sub-basins represents 67% of the total CEA area, while the watershed 

defined by the Cega comprises 33%. The former are regulated at the upper river network, while 

Cega is not yet regulated. 

 
Figure 8. Location of the study area in Duero‘s River basin, river network and flow gauges. 

The Eresma and Adaja sub-basin, with a total discharge of 407 hm3 yr-1, equivalent to 63% of 

the total discharge capacity of the CEA and the Cega sub-basin, provides the remaining 37% of 

CEA discharge (238 hm3 yr-1). Most of the rivers in the CEA system are directly connected to 

the aquifers (IGME, 2008). The frequent descent of the water table level, due to 

overexploitation, is causing a disconnection between the riverbed and the aquifer. This situation 

is exacerbated in dry periods, where most of the rivers have very low flows (CHD, 2015). 

Nine major soil groups could be found in the area: Cambisols (34%), Luvisol (26%), Arenosols 

(19%), Leptosol (11.5%), Fluvisols (4%), Regosol (3%), Solonetz (1%), Solonchak (1%) and 

Gleysol (0.5%). The soil genesis is typically developed from moorland limestone in the 

northeast, Mesozoic carbonates in the headwater area and is detritic in the basin landfill (IGME, 

2009). Sandy soils are the representative textures in more than 54% of the area, causing 

medium-high infiltration rates to subsurface flow to streams and recharge of groundwater 

bodies.  

Agriculture is the main land use, accounting for 54.1% of the total area (Figure 9), followed by 

forestry (27%), urban (12%), shrubland and pastures (6.7%), and water bodies (0.1%). Rainfed 
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crops represent 63% of total agricultural land, whereas fallow land accounts for 31%, irrigated 

annual crops for 5%, and permanent crops represent 1%.  

 
Figure 9. Land use of CEA system. 

2.4.2 Hydrological Modelling with SWAT 

The SWAT model (Arnold et al., 1998) is a spatial distributed hydrological model, widely used 

for land management and water resources assessment in very complex watersheds.  For this, 

SWAT use a disaggregation strategy based on two criteria, (i) sub-basins discretization based on 

DEM (topographic criteria) and (ii) the Hydrologic Response Units - HRUs discretization that is 

based on soil properties, land use and slope classes. Thereby, the sub-basins are aggregated with 
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several HRUs. The calculation unit for SWAT is attributable to this set of units for all the 

biophysical modeled processes. 

The SWAT model is based on a routines tree that provides a solution of the water balance 

equation. These routines put up together the hydrological solution for evapotranspiration, 

surface runoff, soil infiltration and subsurface runoff. Model could be more precise in each 

routine including sediment, chemical and crop yields depending on the input data setup. Soil is 

very complex and SWAT model could be settled up to 10 soil layers. Water flux through the 

soil is based on the saturated capacity of each layer, once the saturation state is achieved, the 

water flux is coupled as water input of next soil layer but if the following layer in depth is 

saturated, lateral runoff occurs. If last layer is reached, water flux composes the aquifers 

recharge volume. Deep aquifer is considered as a lost in water balance, but shallow aquifer 

overfilling is called return flow from shallow aquifer; this volume is routed directly to the 

mainstream of each subbasin according to each case. 

The runoff is one of the main processes assessed by the SWAT model, this routine is based on 

the SCS curve number method (Hjelmfelt, 1991), presenting a sensitive factor related with the 

curve number CN assignation which is in turn related with antecedent moisture condition of 

soil. The method was developed from experimental abstraction as a non-linear function between 

rainfall-runoff processes. The definition of three main routine component (1) runoff 

interception, (2) soil storage variation and (3) infiltrated water in the porous media, expressed as 

potentials, solve the relation for routing water through the soils of the watershed. 

The evapotranspiration ET process can be selected using Presley Taylor method or Penmam-

Monteith method. Some differences can be identified by switching the methods but the most 

universal accepted for modelling purposes with SWAT is the Penman-Monteith method due of 

the capacity of worldwide accuracy and approximation to the real evapotranspiration measured 

in different sites and watersheds. 

The routing into SWAT is completed once all the water fluxes are calculated and routed into the 

main channel of each subbasin. In turn, it‘s routed into the river network. The SWAT tool is a 

model still more used for surface calculations due of the complexity of soils and geology of 

watersheds. The model is often used for estimating the aquifer recharge as a system lost that 

could provide an idea of the system, but more precise coupling models are required for 

estimating the deep aquifer recharge rates. 

2.4.3 Model baseline setup 

The present study uses the SWAT2012_rev664 version with ArcSWAT 2012.10.19. Simulation 

is performed based on a daily time step (2004-2014). Model setup is summarised in Figure 10. 
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In addition to the standard setup process, this work introduces some improvements in the setup 

related to input data to reduce model uncertainty. 

 

Figure 10. SWAT model development flowchart main steps and implemented software. 

Detailed descriptions and sources of the data used to set up the SWAT baseline model are 

provided in Table 1. The complete data for model setup were based on (i) measured data (e.g. 

soil samples), (ii) literature values from published studies, reports and official documentation of 

RBMPs, (iii) assumptions reported in the literature (e.g. soil parameters based on pedotransfer 

functions PTF) and (iv) SWAT predefined databases (e.g. crop parameters). As the scale of the 

CEA is wide, detailed management schedules associated with land uses have been included to 

elucidate their impact on the global water balance. (See Annex 6 for more detailed information).
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Table 1. Model input data sources for Cega-Eresma-Adaja (CEA) SWAT baseline model. 

Data Description/properties Source of data 

Digital Elevation 

model (DEM) 
25 m resolution. Map used to define two slope classes 0-3 and >3% 

MDT25, LiDAR-PNOA by 

© Instituto Geográfico 

Nacional 

Flow gauges Daily discharge (2004-2014) for 2 points: Valdestillas  VFG (Adaja river) 

and Lastras de Cuellar LCFG (Cega river) 

CHD – Duero‘s RBA; 

CEDEX 

Reservoirs Three  reservoirs. Las Cogotas (58,6 hm3), Pontón Alto (7,4 hm3) and 

Serones (6,3 hm3) 
CHD – Duero‘s RBA 

Land use 20 m resolution, 31 basic land-cover categories. Including 18 different 

crops. 
ITACyL, 2013 

Soil characteristics 
16 soil types were determined using 407 soil samples and introducing 

(Saulniers et al, 1997) soil depth empirical model to obtain a total of 92 

soil different units.  

ITACyL, 2013 

Weather data 
Data for 2004 - 2014. Precipitation, daily maximum and minimum 

temperature, daily global solar radiation, surface wind speed, daily mean 

relative humidity. 

AEMET 

Agricultural 

management 

practices 

Surveys from ITACyL for INFORIEGO services. Database for irrigation 

districts with free access. 
ITACyL, 2013 

 

CEA boundaries and sub-basins were defined using a 25-m DEM (Digital Elevation Map). An 

internal sub-basin division was also performed based on interest evaluation points:  flow gauge 

locations, reservoir discharges and predefined sub-basins of DRBA. In total, 121 were defined 

for the CEA system, including 79 for the EA and 42 for the Cega catchment, each comprising 

different HRUs. 

The CEA system, with ten reservoirs, is considered a hyper-regulated system, with all the 

reservoirs located in the headwaters of the Eresma-Adaja watershed (capacity of 81.24 hm3). 

Discharge data on three reservoirs representing 86.8% of the total capacity are available and 

therefore considered for the simulations: Las Cogotas (56.8 hm3), Serones (6.3 hm3) and Pontón 

Alto (7.4 hm3). The discharges from reservoirs were included in the model, following the 

operation rules and their volume capacity. The input required was estimated and fitted by 

analysing the global behaviour of gauging discharge series during the simulation period.  

From the 20 gauging stations located in the CEA system, only two provided daily stream flow 

data for the selected period (2004-2014): Valdestillas (VFG) monitored a northerly outlet 

covering 98.6% of the Eresma-Adaja watershed; and Lastras de Cuellar (LCFG), located in the 

middle of the Cega watershed, covered just 25% of the total area. 

Weather data assignation is a key step in the development of a SWAT model, as any error 

introduced with the water input would propagate in the whole model. SWAT usually assigns the 

data of the nearest weather station to the sub-basin centroid, providing a constant value to the 

whole sub-basin. This could introduce a remarkable model input uncertainty, especially in large 

sub-basins where weather could be spatially heterogeneous in very steep reliefs. But as (Wagner 

et al., 2012) remarks, the definition of a composite climatic value by different weights using 
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diverse interpolation methods significantly improves weather input for the model. This is why 

the weather data assignation was improved, including a spatial-based representativeness of data 

for each sub-basin. To do so, an implementation of the Thiessen Polygon Method (TPM) 

(Thiessen, 1911) was carried out. This method allows the assignment of values by weighted 

portion of the climate variable to the overlapping polygon area of each sub-basin (Figure 11). 

Thus, 121 artificial weather stations were created assigning weighted climate values to the 

centroid for each sub-basin using the TPM method. 

 

Figure 11. Weather data definition to CEA subbasins (A) and Thiessen Polygon Method (TPM) to define 

weather stations for SWAT model (B). Weather stations assigned by subbasin centroid for SWAT model. 

In a traditional crop rotation setup, once the HRUs are defined, each HRU is assumed to have a 

homogeneous land use type, and therefore it rotates entirely. However, reality does not follow 

HRU boundaries for crop rotation. HRUs need to be fragmented (HRU_FR) and crop rotation 

results in a mosaic of crops representing the crop plots year by year. The land use model setup 

for crop rotations was improved with respect to traditional rotations by activating the land use 

change (LUC) module. Specific management operations and scheduling for the HRU_FR (e.g. 

irrigation, fertilisation, etc.) were considering by adding lines in the crop database with new 

codes for land uses with different operations. This was in the case of the same crops but with 

different crop management (e.g. rainfed winter wheat ―WWHT‖, irrigated winter wheat 
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―WWHI‖, etc.). The HRU_FR considers the different land operations as an independent 

calculation. At the end, the HRU water balance values are the results of this land use dynamic. 

Data for crop updates were extracted from remote sensing processed images (ITACyl, 2015). 

The SWAT2009 LUU tool (Pai and Saraswat, 2011) was implemented to assign land cover 

from the satellite images (2004-2014) to the corresponding spatial HRU (see Table B,  in 

supplementary material for more detailed information). This geospatial tool provides the 

required files to update the HRUs with the corresponding percentage (HRU_FR) of LUU (Land 

Use Update) on specific dates defined by the user. The surface flow configuration during 

rainfall events is related to surface roughness and slope. Consequently, crop rotation is essential 

for the runoff process. Curve number (CN) is an important parameter for predicting direct 

runoff and infiltration process. 

2.4.4 Calibration and validation 

During the modelling run process, a warm-up period must be selected in order to ensure the 

establishment of basic flow conditions for the simulations.  Following Kim et al., 2018, taking 

into account that sandy soils are predominant in the area, a one-year period (year 2003) was 

selected to warm up the model. The hydrologic processes need to reach an equilibrium 

condition for better results during calibration and validation.  

Calibration is a procedure to reduce model output uncertainty by adjusting model parameters to 

obtain a model representation that satisfies pre-agreed criteria. In this research, calibration is 

performed by comparing the daily streamflow output for the period (2005-2009) with the 

corresponding measured values. Validation is the process in which the adjusted parameters were 

assessed in an additional period of time (2010-2014) to corroborate the accuracy of the 

adjustment, assessing model output uncertainty.  

Hydrological models have some parameters that cannot be measured directly (Spaaks and 

Bouten, 2013). The main measured parameter of water flow in the watersheds is the streamflow, 

which serves as reference to determine other water flows indirectly (Morán-Tejeda et al., 2010). 

In hydrology modelling, streamflow is one of the measures used for calibration and validation 

(Benedini and Tsakiris, 2013). Other measures such as surface runoff, ground water recharge 

and evapotranspiration, among others, are hard to measure and the data available are limited to 

specific points in time and space. 

Model calibration, validation and sensitivity analysis were performed using the algorithm for 

Sequential Uncertainty Fitting (SUFI-2). This is included in the SWAT-CUP package 

(Abbaspour, 2011). This process was settled for each of the two sub-basins of the CEA at a 

daily time step. SUFI-2 is an algorithm that tries to capture most of the measured data within the 
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95% prediction uncertainty (95PPU) of the model using the selected parameter ranges during an 

iteration process consisting of 300-1000 simulations (Abbaspour et al., 2015).  

Automatic calibration processes were conducted with a previous parameter analysis through 

trial runs (10-100 simulations). During this trial, the final selected parameters for calibration and 

validation were identified by the sensitivity analysis of variables related with stream flow. 

Homogeneous flow time series lengths for both processes were selected to provide consistent 

statistical samples and to assess the more recent available data. Nevertheless, a good correlation 

during validation could be an erratic result due to cumulative model input uncertainties. 

2.4.5 Model performance evaluation 

The model‘s performance was assessed through statistical indices of the SUFI2 algorithm, a 

Bayesian framework to reduce the uncertainty during the sequential and fitting process of some 

objective function.  Suitable ranges for Nash-Sutcliffe efficiency coefficient (NSE) (Nash and 

Sutcliffe, 1970), coefficient of determination (R2), and percentage bias (PBIAS) were selected 

to measure the global matching and relative peak matching of simulated flow with SWAT 

(Gassman et al., 2007). 

The NSE was selected as the objective function for evaluating simulation performance. R2 and 

PBIAS are complementary statistical criteria for efficiency statistics. The NSE is valid for 

ranges between -∞ to 1, where values between 0.0 and 1.0 represent acceptable levels of model 

performance. However, while values up to 0.5 show a satisfactory rating, even values up to 0.65 

are usually considered good results and values between (0.75 - 1.0) are considered very good 

performance (Moriasi et al., 2007). As statistical criterion of performance, the Kling-Gupta 

Efficiency (KGE) was selected. Similar to NSE, KGE represents the correlation, bias and 

relative variability between observed and simulated values. KGE values range from -∞ to 1, and 

the optimal value is 1. 

Model uncertainty was also evaluated, including R-factor (thickness of the 95PPU envelop) and 

P-factor (as the percentage of observed data enveloped by the modelling results) criteria, to 

constrain valid parameter ranges for CEA system modelling. Both judge the strength of the 

calibration and validation processes. Desirable ranges for the P-factor (> 0.7) and R-factor (< 

1.5) were targeted to capture most of the matching observed flow into the 95PPU band of the 

model during an iterative process of a defined group of simulations (Abbaspour et al., 2004).  
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2.5 Multiscaling NDVI series analysis of rainfed cereal in central Spain.  

2.5.1 Site description 

The study area is located in north-central Spain in the midlands of the Eresma-Adaja River 

system (Rivas-Tabares et al., 2019b), overlapping with most of the Avila and Segovia 

provinces. The area covers 200,197 ha from which 70% is mainly used for rainfed barley and 

wheat and 14% are other crops (e.g., canola, sunflower, and peas), as the most typical rainfed 

crops in the area. These rainfed cereals are part of the most representative features of the crop 

rotation sequence in the area. Two different sites have been chosen based on the SOM digital 

soil map of Figure 7d. SOM soil unit 5 in subbasin 50 (SOM5) and SOM soil unit 15 in 

subbasin 24 (SOM15) were selected for this study (Figure 12).  

 
Figure 12. Selected sites for NDVI analysis with similar edaphoclimatic conditions using the Self-

organizing maps, units 5 and 15 that overlies with sub basins 50 and 24 respectively. The site is located in 

the midlands of Eresma-Adaja watershed in north-central Spain. 

2.5.2 Data 

2.5.2.1 Soil map 

The digital soil map used in this work is based in a previous study (Rivas-Tabares et al., 2019b) 

and is employed to discriminate soils of agroclimatic zones. This map uses the self-organizing 

map (SOM) algorithm (Kohonen, 1982) to  facilitate the clustering of similar soil properties and 

b 
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provide a spatial arrangement of these in clusters. The map was defined based on similar soil 

properties in the area (organic matter, carbon content, albedo, clay, sand, silt, available water 

content, bulk density and hydraulic conductivity) from gridded soil survey points (Llera, David 

A. Nafría et al., 2013).  

In this case, the Eresma-Adaja midland, 15 soil units are defined from the soil property 

envelope, Figure 7. The Cambisols and Luvisols are the most representative soils in the area, 

being derived partially from limestone weathering and sand deposits (IGME, 2009). Loamy 

sand soils are the most predominant texture in the watershed east, while sandy clay loam 

textures characterise soil in the west of the watershed. The soils of the central part of the 

watershed are characterized by sandy loam textures, from a soil textures gradient of sandy clay 

loam from the west to sandy soils to the east.  Two soil contrasting characteristics sites were 

selected to characterize the agroclimatic zones, one in the East (i.e., loamy sand soil) and other 

in the west (i.e., sandy clay loam soil), Table 2. The physical properties of soil represented 

through the SOM soils map are a determinant factor for vegetation expression in long-term 

analysis from earth observations.  

Table 2. Soil and topographic characteristics of Self-Organizing soil units SOM5 and SOM15 in the 

midlands of Eresma-Adaja basin. The deviation is showed in round brackets. 

SOM unit SOM_05 SOM15 

Slope [%] 1-16 1-17 

Altitude [MASL] 925-1050 888-912 

Clay [%] 29 (5.2) 4 (3) 

Sand [%] 56 (4.6) 84 (3.9) 

Silt [%] 14 (4.4) 12 (3.5) 

Organic Matter [%] 0.9 (0.10) 1.7 (0.15) 

Bulk density [g/cm3] 1420 (145) 1839 (129) 

Carbon content [%] 0.5 (0.08) 1.0 (0.09) 

Available water content [mm H2O] 10.1 (0.7) 5.8 (0.7) 

Hydraulic Conductivity [mm/hr] 150 (88) 2890 (981) 

Albedo [-] 0.08 (0.010) 0.03 (0.005) 

Effective Soil depth [mm] 1100 825 
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2.5.2.2 Weather conditions 

The agroclimatic zones definition also requires homogeneous weather conditions. For this, the 

climate data, such as daily precipitation and mean temperatures, are approximately 

homogeneous when a smaller order of sub-basins is considered (Ficklin et al., 2013; Kling and 

Gupta, 2009). The effect of spatial precipitation bias decreases as the spatial scale (i.e. area) 

increases and this can be explained by the fact that basin perform different degrees of smoothing 

to the rainfall signal (Obled et al., 1994). In this order of ideas, a 4th order subbasin for climatic 

data was extracted from a previous study (Rivas-Tabares et al., 2019b). In the referred work, the 

subbasin weather station of Eresma-Adaja was built from near stations to the subbasin centroid 

using the Thiessen polygon method – TPM (Thiessen, 1911); more details about weather 

allocation and TPM subbasin assignation can be found in (Rivas-Tabares et al., 2019b). The 

monthly weather average conditions of temperature and precipitation are shown in Table 3 for 

all hydrological years (i.e., starting in October and ending in September) between 2000 and 

2019. 

Table 3. Monthly average values of precipitation (Pcp), maximum temperature (Tmax), average 

temperature (Tavg), minimum temperature (Tmin). Study period from 2000-2019. 

  OCT NOV DIC JAN FEB MAR APR MAY JUN JUL AUG SEPT Annual values 

Sub-basin 50 (SOM5)   

Pcp [mm] 67.1 59.7 40.1 52.3 39.0 40.7 56.1 57.0 31.7 14.5 13.8 27.1 499.1 

Tmax[°C] 18.2 11.0 8.3 8.0 9.4 13.0 15.6 20.2 26.9 30.2 30.1 25.6 18.0 

Tavg[°C] 12.8 6.9 4.4 4.0 4.6 7.4 9.4 13.0 18.8 21.3 21.7 18.1 11.9 

Tmin [°C] 7.3 2.8 0.4 0.0 -0.1 1.8 3.2 5.8 10.6 12.5 13.3 10.6 5.7 

Sub-basin 24 (SOM15)   

Pcp [mm] 61.2 45.5 34.2 36.5 30.7 36.0 50.3 50.5 31.2 12.6 16.4 25.3 430.4 

Tmax[°C] 17.9 11.0 8.3 8.1 9.4 12.8 15.4 20.0 26.8 30.0 29.9 25.4 17.9 

Tavg [°C] 12.6 6.9 4.4 3.9 4.6 7.2 9.2 12.8 18.5 21.0 21.4 17.9 11.7 

Tmin [°C] 7.2 2.8 0.4 -0.2 -0.2 1.6 3.0 5.7 10.2 12.1 12.8 10.4 5.5 

2.5.2.3 Earth observation data  

The MODIS-Terra MOD13Q1 V06 product at 250 m spatial resolution and 16-day composite 

images (Didan, 2015) from 2000 to 2019 (460 images) were used for single spectral bands 

(blue, red, NIR and MIR) and for the NDVI. 

The extracted bands and NDVI from MOD13Q1 comprise data from 02-01-2000 to 24-12-2019 

that were checked through the quality and reliability pixel index of MODIS data, and only high-

quality pixels (rank key =0) were filtered for the series. It is important to highlight that the 16-

day composite NDVI series are generated using the two 8-day composite surface reflectance 

granules (MOD09A1) in the 16-day period considered one of the most spatiotemporal reliable 

products of MODIS (Didan, 2015).  
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The data extraction from the MODIS product was performed using the Google Earth Engine 

(Gorelick et al., 2017), and the scripts are provided in Annex 5. 

2.5.3 Plots and pixels selection criteria 

A workflow that illustrates the procedure of the sampling methodology of this work is shown in 

Figure 13. In both sites selected, SOM5 and SOM15, 4,911 plots of monoculture cereal patterns 

were identified from the crop rotations analysing of the land cover classification data of the 

Agrarian Technological Institute of Castilla and Leon (ITACyL) (Llera, David A. Nafría et al., 

2013) in the Eresma-Adaja midlands. 

Based on (Valverde-Arias et al., 2019) work, two conditions were applied for the site pixel 

selection in these plots: the selected centroid plot has to (i) buffer in at least 2 pixels from the 

subbasin bounds and (ii) guarantee a minimal distance of two times the diagonal pixel size plus 

1 m (D=707.1 m) between centroids to avoid resampling the same pixel and avoid the subbasin 

bounds effect. 

Finally, pixels from ten plots were selected and considered representative monoculture parcels 

during the study period, five plots located in each zone. 

 
Figure 13. Workflow of the sampling methodology and information extraction from Earth observations 

and soils map. 

2.5.4 Soil reflectance characteristics 

With the purpose to validate the difference in soils between SOM5 and SOM15, the soil 

reflectance was analysed to see if statistically significant differences were found. The time 

window for bare soil identifications was chosen from the tillage operation dates of the selected 
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plots. This information was extracted from surveys of the INFORIEGO survey (Llera, David A. 

Nafría et al., 2013). In the studied zones, the spectral response from soils can be obtained in the 

2nd week of February (February 18th), the beginning of the growing season. 

An ANOVA was applied for each spectral band values at that date during the study years to 

compared SOM5 and SOM15. Previously, a normality test was conducted for each spectral 

band and zone to confirm the suitability to apply this type of analysis. 

Additionally, the relation between NIR (0.7 - 1.1 µm) and red (0.6 - 0.7 µm) reflectance bands 

over bare soils, named the soil line (SL)  (Baret et al., 1993; Gitelson et al., 2002), was used to 

compare both zones.  

The SL is identified from a graph of the NIR band against the red band. The function for bare 

soil line (BSL) was used to calculate it from Landsat package in R (Goslee and Goslee, 2019) 

for each site. This algorithm uses the quantile method to take the lowest set of points, those with 

an NIR/red ratio less than the limit-th quantile, in this case, defined as 0.1. Thus, the minimum 

value of NIR for each level of red was chosen and then these points were used in a linear 

regression to estimate the slope that is identify as BSL. 

2.5.5 NDVI series and statistics 

The NDVI time series was calculated as the average from the 5 selected parcels per zone and 

each date (NDVI original). These series cover from 2000 till 2019, having 23 data points per 

year (n=23) and a length of 460 values.  

Some of the depressed values of the series were pre-processed through the Savitzky–Golay filter 

(Savitzky and Golay, 1964) to smooth the time series, specifically those that were caused 

primarily by cloud contamination and atmospheric variability (Chen et al., 2004). 

A cycle pattern was extracted from NDVI original series calculating the average per date in 

each zone. Based on this cycle pattern, an NDVI average value from the crop cycle was used to 

compare both zones. Additionally, the relation between the precipitation and NDVI was study 

through the correlation of the accumulated variables during the period that a clear increase of 

the vegetation index is observed, January to May (Reed et al., 1996). 

Finally, the Mann-Kendall test was applied for each NDVI original series to determine whether 

there was any significant trend following  Jiang et al., 2015. This is an important point, as if a 

trend is detected a detrended should be applied before the multiscaling analysis (Davis et al., 

1994). 
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Beside the NDVI original series two more were extracted. The first one was obtained 

subtracting from NDVI original series the cycle pattern naming it as NDVI residual. Performing 

this operation, the seasonality of the series was removed. In many studies this NDVI residual is 

considered as anomaly and it is employed to assess the current state of crops and rangelands 

(Moges et al., 2005). However, different types of anomalies can be found in the literature 

(Numata et al., 2007). In this study z-score anomaly were chosen as a differece between the 

NDVI average and its value at a date in a year could be signingicant or not depending in the 

dispersion that NDVI values have normally at that date. Terefore, the second series obtained 

was dividing the NDVI residual by the standard deviation (SD) of the NDVI values per date 

obtaining the NDVI anomaly commonly used in the studies of extreme events (Xue and Su, 

2017).  

These three types of series, for each site, were analysed with the Generalised Structure Function 

that is explained in the next section. 

2.5.6 Generalized structure function (GSF) 

The GSF consists of the statistical assessment of  nonoverlapping fluctuations across different 

increments of scales in the time series. The analysis consists of the comparison of statistical 

moments of the series for each scale increment (Monin and Yaglom, 1999). A multiscale 

behaviour of the series can be identified when statistical moments are invariant at different scale 

increments (Davis et al., 1994).  

The time series is considered a f (  ), (i = 1,2,3,…, N) in which the fluctuations are assessed. 

These fluctuations can follow a random behaviour (Brownian motion) in which the variance is 

proportional to time intervals of ti and can be computed through the Hurst exponent H: 

√〈  〉   (  )  where H is the power exponent in the range of             (Lacasa et 

al., 2009). A Hurst equal to 0.50 indicates Brownian motion and characterizes non-memory 

signals. Values from            , the signal is persistent, showing a trending behaviour in 

which the past signal influences the following data sequence and for H Values ranging      

       are referred to as the most common signal in nature and indicate anti-persistent 

behaviour. When the series is anti-persistent, this suggests that the series is sensitivity to 

external forces with short-term variations. Thus, an increase will most likely be followed by a 

decrease or vice-versa (i.e., values will tend to revert to a mean). This means that future values 

have a tendency to return to a long-term mean. 

Nevertheless, the scaling analyses consist of generalizing the structure function S (equation 1) 

with stationary gradients for q>0 (Yu et al., 2003) defined as: 

  (  )  〈(| (     )   (  )|)
 〉     (1) 
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  (  )       
 ( )      

  ( )     ( )    (2) 

where   is the ith data of the sequence, and   can be any real number including negative values 

(Davis et al., 1994). The    parameter is scalar depending on   at any power of   , suggesting 

in this case that   has a variable relationship with H and  ( ) is the exponent of the structure 

function (equation 2). Thus, the exponent H can be defined for a hierarchy using the  ( ) as: 

 ( )   
 ( )

 
      (3) 

If the plot  ( ) against   shows a linear behaviour, this behaviour is related to monofractal 

signals. However, if the line is nonlinear, the behaviour is related to multifractal signals 

(Lovejoy et al., 2001). The multifractality of the signal is defined when the different windows of 

the data sequence (series fragments) are equivalent to the different zones of the fractal object 

defining the various values of the fractal dimension. 

2.6 Land Use Land Cover change through scenario modelling 

2.6.1 Study Area 

The sub-basin ―Arroyo de la Balisa‖ (AdlB) comprises 242 km2 and is located in the middle 

section of the Duero Basin, Figure 14. The sub-basin stream persists under unregulated regime 

inside the CEA system. The former is regulated by some reservoirs in the uplands. In addition, 

the ecological status of the water bodies within the sub-basin is deficient due of low IPS 

(Specific Pollution Sensitivity Index) a biological water quality indicator related to benthic 

organisms (CHD, 2015). The sub-basin is slightly sloped and elevation range between 747 and 

1011 m. The common soils are Luvisols, Fluvisols and Cambisols based on FAO soil classes 

(Nachtergaele et al., 2009), presenting moderate infiltration rates. Its agro-climate is dominated 

by a Mediterranean sub-arid regime, highlighted by a very dry summer and a mean annual 

precipitation of 427 mm yr-1(AEMET, 2013). In addition, the sub-basin is fundamentally 

devoted to agriculture (70% land allocated for this purpose), and mainly used for rainfed 

agriculture for cereal production (e.g. winter wheat and barley), Figure 15. Although irrigation 

is an occasional practice, this is more and more expanded. This is linked with a very high-water 

demand and intensive tillage and fertilization. 
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Figure 14. Case study area for LULC scenario modelling. Subbasin 443 ―Arroyo de la Balisa‖ AdlB  in 

North Central Spain. 

2.6.2 Pre-processing of LULC mapping  

Prior to participatory scenario definition, a LULC map was performed to allocate crop rotation 

and management operations and then this was used for baseline model set-up (Figure 15), since 

it represent properly the average distribution of LUs during the interval of analysis (Rivas-

Tabares et al., 2019a). To allocate temporal the LUs, specifically to identify crop rotation for the 

period 2004 to 2014, two sources of information where used: satellite images already classified 

by ITACyL for the period  2011-2014 (https://atlas.itacyl.es/descarga/); and data from a 

regional survey of JCyL (The Junta of Castile and Leon) for the period 2004 to 2010. As a result 

of overlapping the former data sources, a hybrid set of LU maps at a resolution of 20m were 

defined for the period 2004-2011. This was conducted to represent the LU spatially-matching to 

the survey area for each land cover. In addition, cadastral maps were additionally used to 

improve the spatial matching of LULC time-series for the simulation period. The LU classes 

were defined in detail for agriculture (crops), forest, grassland, shrubs, urban-transportation and 

water.  
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Figure 15. Land use (LU) of sub-basin ―Arroyo de la Balisa - AdlB‖ used as baseline scenario. 
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The definitions of LU management include all human activities on a given system (Neitsch et 

al., 2002). In this case, the assessment of those activities was focused on cropland practices.  

The crop rotational patterns described by stakeholder were posteriorly adjusted to a graphical 

template to facilitate management information assignation, Figure 16. This template facilitates 

the allocation of management rules from stakeholders and from secondary sources, as surveys. 

The template is intuitive for crop cycle and at the same time is in concordance to hydrological 

year. However, this template is also flexible and could be adapted to other crop pattern cycles.  

 

Figure 16. Template for crop rotation cycle assignation for 5 years cycle corresponding to hydrological 

year (from October till September). Numbers from 1 to 5 indicates the year number. 

The template also allows identifying other farm practices, such as plantation dates, tillage, 

irrigation, fertilizer and pesticides application, intermediate cropping, harvesting dates, etc. 

Although, the assigned dates are estimates due to variability of weather conditions of each year 

but fixed for modelling purposes. Once the template was completed with crop pattern and its 

management, modeler translates those results into data input for modelling. However, the 

introduced values into model assuming that operations for each crop occurs at the same date 

over the whole sub-basin. A summary of management practices by crop is presented in Table 4. 
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Table 4. Summary of management practices by land use (LU) crop in Sub-Basin  ―Arroyo de la Balisa‖ 

AdlB, Spain. 

Land Use Planting Tillage Fertilization Harvest 
Crop SWAT 

Code 
 Date Operation Date Date N-P-K Total 

(kg) 
Date 

Winter Wheat WWHT 08-dic Fallow 03-dic 12-oct 27-00-00 350 28-jul 

Field Cultivator Lt15ft 05-dic 

Roller Packer Flat Roller 07-dic 

Barley BARL 25-feb Fallow 23-feb 24-feb 27-00-00 350 21-jul 

Maize CORN 01-abr Subsoil Chisel Plow 10-abr 06-may 08-15-15 1000 15-sep 

Rotary Hoe 25-abr 

Field Cultivator Lt15ft 25-may 

Roller Packer Flat Roller 30-may 

Potato POTA 16-abr Spring Ploughing 05-abr 04-abr 08-15-15 1000 22-ago 

Field Cultivator Lt15ft 09-abr 

Bedded disk-row 12-abr 

Beet cultivator 8 row 14-abr 

Sugar beet SGBT 01-mar Spring Ploughing 20-feb 01-mar 27-00-00 1200 15-may 

Field Cultivator Lt15ft 27-feb 

Disk Plow Lt23ft 28-feb 

Sunflower SUNF 25-abr Spring tooth Harrow 
Ge15ft 

23-mar 22-mar 08-15-15 600 02-sep 

Alfalfa ALFA 01-oct Fallow 04-oct 02-oct 00-20-20 200 05-may 

05-jun 

01-jul 

05-ago 

01-sep 

30-sep 

Horticulture HORT 03-mar Fallow 02-mar 01-mar Elem-N 500 01-ago 

Aromatic herbs AROM 15-feb Fallow 02-mar 04-mar Elem-N 500 01-ago 

Peas PEAS 15-nov Fallow 14-feb 13-feb Elem-N 300 01-jul 

Canola CANA 06-oct Fallow 16-oct 17-oct 08-15-15 250 20-jul 

Olives OLIV already planted Spring Ploughing 02-mar 01-mar Elem-N 250 15-oct 

Vineyard GRAP already planted Spring Ploughing 15-mar 13-abr Elem-N 250 15-ago 

2.6.3 Scenario definition 

The LULC scenarios used in this research build on the participatory process developed in the 

TALE project (Towards multifunctional agricultural landscapes in Europe: Assessing and 

governing synergies between food production, biodiversity, and ecosystem services)(Volk and 

Hagemann, 2018). The purpose of TALE was to ground the debate on land sharing and sparing 

to the reality of different European Agricultural Landscapes by developing participatory 

agricultural scenarios, consistent with European policies (Common agricultural Policy, Water 

Framework Directive, Birds and Habitat Directive) and global socioeconomic drivers as 

determined by the IPCC Shared Socioeconomic Pathway, and explore quantitatively the 

ecosystem services synergies and trade-offs linked to different land use trajectories. The project 

involved five case studies, and AdlB sub-basin of CEA basin was one of the case studies (see 

Figure 14). Thus, the LULC scenarios of this sub-basin build on the participatory exercise of the 

TALE project. The details of the scenario process are described in Hagemann et al., (2019) and 
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the resulting scenarios are discussed in Karner et al., (2019). In summary, the land use scenarios 

represent contrasting visions about how to balance regional agricultural development and the 

continuous provision of key ecosystem services such as water supply, and biodiversity 

conservation.  

What was sought with the scenarios was to first develop narratives at a regional level about 

possible regional developments in agriculture and their compatibility with environmental 

objectives (ecosystem services), which were consistent with narratives of policies at the 

European and global socioeconomic levels. Based on these narratives, elaborated in a 

participatory way, they were translated into scenarios of LU changes, where types of uses, 

spatial allocation, and management practices, including crop rotations, are quantitatively 

detailed. These scenarios, before being used for hydrological simulation, were validated with 

actors. Further details on the participatory scenario process, stakeholder composition group, 

narratives and outcomes are provided in the supplementary material Annex 7. 

2.6.4 Modelling 

The SWAT model was used to assess water budget differences from the three contrasting 

visions of agricultural development through LULC scenarios in the sub-basin AdlB of CEA 

system. This assessment includes in detail: the stream flow out regime variation and depth 

aquifer recharge volume fluctuations. The model set-up, calibration and validation procedures 

were used from a previous SWAT model of CEA system (Rivas-Tabares et al., 2019b) from 

which was extracted the model for AdlB sub-basin and was established as baseline scenario. 

The outflow series of CEA model was considered to analyze if any regulation effect of flow 

from Las Cogotas reservoir has effect on flow series at the outlet of case study. To do that, a 

comparison between Coca flow gauge values and CEA previous model was done, finding that in 

case study there is no alteration of reservoir effect on outflow series, Figure 17. For this reason, 

the calibration and validation parameters values of the of CEA model were used to adjust LU 

scenario models (LSH, LBA and LSP). 
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Figure 17. Flowout series comparison between Coca flow gauge (COCA_FG) and subbasin,―Arroyo de 

la Balisa – AdlB‖, flow gauge (_44+57*) from Ceja-Eresma-Adaja (CEA) model. 

Nonetheless, the definition of HRU during modelling of LULC scenarios is crucial due of its 

spatial representativeness. The HRUs are spatially and dimensionally different depending on 

LU, soils and slope. Achieve a spatial matching of HRU would allow a common framework for 

a direct comparison between HRUs through the different scenarios. Hydrologic implications 

due of LULC change were evaluated through consistent HRU spatial distribution. This means, 

that the HRUs for this study are spatially coincident independent of crop and management 

schedule of the LU scenarios.  

For this, the baseline model was defined with 224 HRUs based on LU reference map (Figure 

15) for the simulation period. Considering baseline model as reference for HRU definition, the 

224 HRUs polygons are common through the four models (Baseline, LSH, LBA and LSP). 

According with LU‘s, we classified the HRU condition, distinguishing between static and 

dynamic for LULC change. Some of the HRUs keep it static in time due of invariant LU 

condition (e.g. water bodies, transportation, urban, irrigated areas and, some forest patches). 

Meanwhile, most of agriculturally based HRUs are more dynamic. Thus, within the dynamic 

HRUs, the crop rotations and crop management were assigned for each scenario. A group of 

208 units were classified as static HRUs (49.4% of the total area), they represent polygons less 

than 100 hectares each and the other complimentary 16 HRUs (dynamic) were bigger than 100 

hectares, Figure 18. From the static HRUs (208), 192 HRUs are dedicated to agriculture in a 

fragmented mosaic representing the 10.4% of the area, the resting 16 static HRUs were assigned 

by the following: four for urban/transportation, four grassland and shrubs, six forest and two for 

horticulture. In the other hand, the 16 dynamic HRUs represent the 50.6% of the total area and 

the 83% of rainfed agriculture, depicted mainly for extensive cereals 57.4%. 
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Figure 18. Hydrological Response Unit (HRU) template for static and dynamic HRUs of subbasin, 

―Arroyo de la Balisa - AdlB‖. 
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3 Results and Discussion 

3.1 Self-Organizing maps of soil properties 

3.1.1 Soil mapping for hydrological modelling 

In the first model based on HWSD map, the HRU definition was based on the 14 soil units. In 

this case, 79 of the Adaja River sub-basins were defined using a unique soil unit, contrary to the 

high spatial variability expected in soils properties within the subbasin. Larger sub-basins could 

be defined to capture more soil units, but the river network is regulated in highlands and 

narrows in midlands-lowlands sections, causing a diverse size of sub-basins. The lack of finer 

soils data resolution could force to merge the sub-basins to get more soil units per subbasin, but 

this is not desirable because of limiting outflow results. This suggests that the movement of 

water within the subbasin is homogeneous due of soil properties and variability in the model is 

only explained by land use and its management. Therefore, soil representativeness at subbasin 

scale is not accurately captured by HWSD in the watershed studied. The soil map scale 

1:1,000,000 is not recommended for Adaja River hydrological modelling with SWAT due to the 

lack of soil variability representativeness at subbasin scale. In addition, soil depth for the soil 

units only considers two depths in the whole area, 300mm in the north and 1,000mm in the rest 

being an excessive simplification for the complex schema of this subbasin. The HRUs should 

contain accurate information in soils and land use as the subbasin outflows are the summation of 

different water flows from the HRUs. 

The TSU soil map obtained provides an identical map from the taxonomic point of view from 

the original. The difference is that TSU map now includes the soil properties. The quantification 

of the eleven soil properties and the soil depth was done by averaging the raster values of each 

one into the taxonomic units‘ boundaries (see Annex 8). With this approach, the soil depth 

obtained will be the average of soil depths belonging to the inside of the boundaries and this 

could be a source of uncertainty in water fluxes through soils.  

In the case of SOMM, the soil clusters are equivalent to the soil units (Figure 19). From 3 to 50 

number of cluster two different metrics were used to obtain the optimum number: (i) the lowest 

value between the sum of normalized mean distance and (ii) the lowest DB index.  The SOMM 

clusters from 13 to 19 present an optimal range (showed in Figure 19). However, we found that 

the 16 clusters array meets both criteria with a minimum local DB index value that provides a 

good performance metric pointing it as the best map. At the same time, they are also in 

concordance to a topographic distribution as showed in Figure 20. 
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Figure 19. Self-organizing maps assessment testing from 3-50 clusters for soils mapping in Adaja river 

watershed. 
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Figure 20. Self-Organizing Map (SOMM) with 16 soil clusters used for SWAT hydrological modelling 

for Adaja watershed and topographic comparison to the elevation map. 

Soil mapping for hydrological purposes differs from edaphological mapping point of view 

(Burrough, 1983). If a pedogenesis soil clustering is the goal, other neural network different 

from SOM should be used for this purpose. The method selected depends on the application 

requested. In this case, SOMM was based on a learning algorithm from the Kriging 

interpolation input maps and do not require additional validation than the metrics evaluation. 

Some soil properties vary with time, whereas the SWAT soil data base remains constant for all 

the studied period. For this reason, several studies find that hydrological models present 

different stream flow effect because of different soil resolution during model set up (Geza and 

McCray, 2008; Romanowicz et al., 2005),  even suggesting that most of the model uncertainty  

is driven by a scale-dependence for water balance in sub-arid watersheds (Muttiah and Wurbs, 

2002). Not only land use scenarios and land management are the sources to optimize the human 

activities in watersheds. It is desirable that soil properties changes should be included as part of 

land use scenarios (Bormann et al., 2007). This point out that field work its necessary to update 

soil sampling sites due to temporal soil properties variations such as infiltration rates, organic 

matter content, among others. 

Soil mapping for hydrological modelling is still under continued development and the 

techniques as Kriging and SOM are valuable contributions to develop soil scenarios for 

hydrological modelling in SWAT. 
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3.1.2 SWAT parameters analysis 

During model calibration, 25 parameters were selected (Table 5) based on a literature review of 

sub-arid basins (Rivas-Tabares et al., 2019b).  The parameters selection depends on the main 

hydrological modeled processes and the measured data used to calibrate the model. In this case, 

parameters associated to processes like the runoff, internal soil fluxes, watershed configuration 

and stream routing characteristics were considered performing model calculations through the 

SUFI-2 algorithm simulations for stream flow calibration.  

Table 5. Comparison of sensitivity parameters during calibration of three different SWAT model set-up 

in Adaja watershed. 

 HWSD TSU SOMM 

Parameter 
Sensitivity 

Ranking 
t-stat p-value 

Sensitivity 

Ranking 
t-stat p-value 

Sensitivity 

Ranking 
t-stat p-value 

GW_DELAY.gw 18 0.767 0.445 24 0.064 0.956 1 6.043 0.000 

OV_N.hru 3 3.429 0.001 6 1.524 0.131 2 -3.168 0.002 

CN2.mgt 1 -41.823 0.000 1 -13.616 0.000 3 -2.903 0.004 

REVAPMN.gw 11 -1.272 0.207 22 0.292 0.772 4 -1.421 0.159 

SOL_AWC.sol 7 1.762 0.082 4 2.339 0.022 5 -1.291 0.200 

SURLAG.bsn 21 -0.236 0.813 9 -1.191 0.237 6 -1.039 0.301 

ESCO.hru 20 0.254 0.800 10 -1.178 0.242 7 0.994 0.324 

SHALLST.gw 6 -1.763 0.082 3 -3.185 0.002 8 -0.952 0.344 

GWQMN.gw 25 -0.007 0.994 16 0.579 0.564 9 -0.925 0.357 

ALPHA_BF.gw 22 0.205 0.837 20 -0.309 0.758 10 -0.884 0.379 

LAT_TIME.hru 13 -1.202 0.233 14 -0.732 0.466 11 -0.843 0.401 

SLSOIL.hru 8 -1.503 0.137 13 -0.944 0.348 12 -0.723 0.472 

HRU_SLP.hru 14 -1.127 0.264 17 0.573 0.568 13 0.688 0.494 

CH_K2.rte 24 0.040 0.968 21 -0.305 0.761 14 -0.636 0.527 

SOL_Z.sol 4 2.855 0.005 2 4.357 0.000 15 0.544 0.610 

CH_K1.sub 10 1.378 0.172 19 -0.341 0.734 16 -0.607 0.546 

SLSUBBSN.hru 2 4.026 0.001 8 1.273 0.207 17 -0.595 0.553 

CANMX.hru 16 0.899 0.371 23 0.146 0.883 18 0.387 0.699 

CH_N2.rte 19 0.588 0.558 18 -0.386 0.700 19 0.387 0.700 

CH_N1.sub 15 1.048 0.298 7 1.350 0.181 20 -0.377 0.707 

EVRCH.bsn 23 0.152 0.879 15 -0.707 0.481 21 -0.179 0.857 

GW_REVAP.gw 9 -1.492 0.139 12 -1.167 0.247 22 0.166 0.868 

RCHRG_DP.gw 12 1.250 0.215 11 -1.167 0.247 23 -0.076 0.939 

EPCO.hru 17 -0.774 0.441 25 0.056 0.955 24 0.041 0.967 

PLAPS.sub 5 1.800 0.076 5 1.623 0.108 25 -0.016 0.987 

 

Table 5 shows the sensitivity metrics for each calibrated parameter for the three maps obtained. 

A p-value close to zero and larger values for t-stat indicates the most sensitive parameter, and 

both are used to establish a sensitively ranking (Abbaspour, 2013) that could serve as a guide to 

reveal from where uncertainty comes from. The parameters related with groundwater fluxes, 

HRU definition and soils are the most sensitive. Within these, the soil depth and available water 

content remains in the first seven more sensitive parameters in the three models. It‘s important 

to remind that from the parameters related with HRU definition, land use and soil units are 

included.  It is also notorious that soil depth remains as an important parameter in model 

sensitivity. Knowing that parameters‘ sensitivity analysis is unique for each studied catchment 

(van Griensven et al., 2006), some of them (CN_2, SOL_Z, SOL_AWC) are presented too in 

some sub-arid basins in the first 10 of the sensitivity rank (Aouissi et al., 2016; Gao et al., 2018; 

Li et al., 2010). 
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3.1.3 Calibration-Validation implications 

Considering the large extension of the Adaja watershed and its regulated river network situation 

in the up waters, the calibration and validation process at a daily time step is well captured by 

the SWAT model. During the calibration and validation processes of the three soil sources, it is 

notorious that a stepped improvement has been achieved through the three models, getting the 

best result with the SOMM strategy (Table 6). The statistical criteria (Nash-Sutcliffe efficiency 

coefficient - NSE, R2 and PBIAS)(Nash and Sutcliffe, 1970) values were well captured above 

the satisfactory criteria during both the calibration and validation periods following Moriasi`s 

work in 2007 (Moriasi et al., 2007). More details of SOMM set-up, calibration, and validation 

process and their performances can be found in (Rivas-Tabares et al., 2019b).  

Table 6. Comparison of three soil sources models implemented in SWAT model for Adaja watershed at 

daily time step using 25 parameters with the SUFI-2 Algorithm. 

In the three cases the objective function for calibration was the Nash-Sutcliffe efficiency 

coefficient (NSE), showing a better result with SOMM improving a 0.46 NSE value in HWSD 

map set-up to 0.84 in SOMM map set-up. A p_factor larger than 0.5 shows that more than 50% 

of observations are included inside the 95PPU band. A r_factor smaller than 1.5 indicates a 

reasonable prediction of uncertainties (Kamali et al., 2017). Comparing these values with the 

ones showed in Table 6, the best prediction rank was SOMM, then ITACyL and the third 

HWSD soil model configurations. 

As far as we know, no other authors report similar improvements using SOM strategy for 

setting up SWAT model in soils database. Nevertheless, similar work were conducted to use 

artificial neural networks for digital soil mapping in the Iberian peninsula (Freire et al., 2013). 

The referred work suggests that for digital soil mapping the Multi-layer Perceptron (MPL) 

strategy show better results for edaphological mapping of soil properties rather than the SOM 

strategy. Nevertheless, the MPL is too sensitive of soil sample data used to develop the model 

and SOM is better to reduce the dimension of soil units minimizing soil properties error. The 

soil database properties with a sampling of 25x25 m were collected from three different 

sampling campaigns and at analysis were carried out at different laboratories. Hence, SOM 

strategy is preferable to avoid the sampling bias effect during the clustering configuration. 

SWAT Model 

Soils Set-Up 
Period R

2
 NS bR

2
 PBIAS KGE p_factor r_factor 

HWSD Calibration 0.61 0.46 0.54 10.90 0.71 0.46 0.70 

 Validation 0.57 0.44 0.53 12.02 0.69 0.44 0.66 

TSU Calibration 0.64 0.42 0.59 24.80 0.73 0.52 1.51 

 Validation 0.64 0.40 0.58 20.20 0.70 0.50 1.50 

SOMM Calibration 0.86 0.84 0.70 -10.80 0.84 0.63 0.39 

 Validation 0.85 0.82 0.61 -9.10 0.86 0.61 0.37 
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It‘s important to note that the HRUs number was reduced to 600 units as a strategy for soil data 

aggregation for hydrologic simulations (Luo et al., 2012) but different HRU sizes between the 

three soil set-up will might affect the hydrological processes at subbasin scale. This could be 

because of slope value and length differences of each HRU. As result of this situation, stream 

flow predicted is overestimated during peak flows or precipitation events over wet soil. The 

opposite is true with an underestimation of the flow when there are over 20 to 30 days with low 

humidity in the soil. This is in agreement with a similar situation reported by Geza‘s work in 

2008 (Geza and McCray, 2008), in which a different model set-up was compared between State 

Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO) 

soil data bases in the Turkey Creek watershed in Colorado. Other work reported by 

Romanowicz et al., 2005 show the SWAT model sensitivity to soil data parameterization with 

two data sets at 1:500.000 and 1:25.000 scale soil maps in Belgium. This work suggests that 

SWAT model is sensitive to data quality of soils properties. 

An interesting characteristic of soil database sets comparison is that a larger quantity of HRUs 

doesn‘t imply better calibration-validation procedures to achieve satisfactory adjustment of 

model parameters. The soil units and their properties are a source of uncertainty and any effort 

to reduce the soil properties dimension could improve calibration and validation procedures. 

3.1.4 Water balance and flows assessment 

The main water cycle components were estimated and presented in Table 7 for the period 2004 

to 2014. The values are presented for an average year showing the overall behaviour of the 

water balance components. This result shows that HWSD present larger differences in CN 

average value influencing the surface runoff that it‘s too high for this area suggesting a runoff 

overestimation. This is visible again in calibration series during storms days (series not 

showed). The model setup with HWSD was discharged at this point, suggesting that the soil 

map scale do not respond to the observed outflow at VFG. One difference related with runoff 

process is that this depends on infiltration rates which, in turn, are associated with the soil group 

(Figure 21).   

Table 7. Summary of the main water balance components from three soil sources (HWSD, TSU and 

SOMM strategy) assessed with SWAT model for Adaja river watershed. Values in [mm/yr]. 

Water balance component HWSD TSU SOMM 

Precipitation 438.5 438.5 438.5 

ET 355.5 326.2 339.3 

Surface runoff 29.09 21.41 16.1 

Lateral flow 14.17 15.01 1.89 

Return Flow 18.01 31.57 26.87 

Percolation to shallow aquifer 32.12 66.08 68.89 

Revap from shallow aquifer 35.47 31.40 23.80 

Recharge to deep aquifer 1.61 6.66 2.81 
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Figure 21. Hydrological group and soil depth comparison of the three soil maps for SWAT set up of 

Adaja river watershed. 

The ITACyL map and SOMM present similar behaviour during calibration for CN and surface 

runoff, suggesting that for both soil sources were similar in surface water flows. However, 

larger differences of water fluxes through the soil profile are more evident. Comparing the final 

soil depth for soil units and clusters, it‘s clear that TSU soil depth has an influence on lateral 

flow regulation and lag time in configuring discharge hydrogram at VFG. When soil layer is 

thin and hydraulic conductivity are slightly higher, the return flow as lateral contribution to 

streams is higher, as showed in Table 7. The SOMM shows a more regulated behaviour of flow 

contribution to streams because of peak matching during calibration as showed in Figure 22.  
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Figure 22. Observed and simulated daily streamflow for calibration and validation at Valdestillas flow 

gauge (VFG) for the three models. The last year of calibration is 2010 and first year of validation 2011. 

The model calibration for each soil data set provides an idea of how well the model is 

representing the stream flow.  The results from this comparison shows that the SOMM presents 

the best fitting values to stream flow at VFG, requiring less effort during the calibration process. 

The clustering strategy of soil properties provides very good results for stream flow prediction 

in sub-arid watersheds as Adaja river watershed. 

The Adaja river network, as a sub-arid watershed, is very sensitive to soil properties set up 

during modelling with SWAT. Others clustering algorithms for soil properties could be also 

used reducing the calibration-validation effort and achieving more precise models. However, 

top quality soil survey with fieldwork is always desirable even for the efforts and time that 

consumes. 

3.2 The water availability in a sub-arid Mediterranean watershed 

3.2.1 SWAT model setup improvements 

In the case of the weather data assignment, a water input difference of around +14% (59mm/yr) 

was found between the method of weather direct assignation by centroid and the proposed TPM 

methodology (Figure 11). This is a considerable volume difference compared to the mean 

stream flow of the CEA system (EA with 57mm/yr and Cega River with 83 mm/yr) and to mean 

rainfall in CEA (427mm/yr). Other authors also found differences between both methods. For 

example, Pande et al., (1978) reported a water input difference of +13% from the arithmetic 
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mean method with respect to the TPM method in Kings river, California. On the contrary, 

(Fiedler, 2003) estimated -3% in the Cumberland Plateau (United States). This situation was 

also reported by (Strauch et al., 2012), who showed variations in model streamflow arround 

(+1,5% in calibration and +3.5% in validation) among different rainfall estimation methods 

(including the TPM). Independently of the method used for weather assignation, the 

precipitation data are one of the most significant sources of uncertainty of hydrology modelling 

with SWAT (Aouissi et al., 2013; Rouhani et al., 2009). As other studies have reported and the 

current research findings support, rainfall datasets tend to drag most of the input model 

uncertainty along with them. This is the only parameter considered for water input in the model, 

especially in Mediterranean basins, where the precipitation varies in space and time. 

For the soil map, soil clusters for the range from 3 to 50 soil clusters were tested (Figure 23). 

The selected set of clusters must present the lowest value between the sum of the normalised 

mean distance and the normalised DB index (Wehrens and Buydens, 2007). The number of soil 

clusters with low values for both indices was in the range of 13 to 19 clusters. The comparison 

between clusters and spatial taxonomic distribution serves as validation of the SOM soil 

clustering map for SWAT, noting that 16 units is the most suitable number of clusters (Figure 

24). Thus, the number of HRUs was reduced from 34,037 to 1,000 HRUs as an improvement 

proposed by (Luo et al., 2012). This method differs from the use of taxonomic soil units which, 

in many cases, are not based on soil properties (Burrough, 1983). Using this number of soil 

clusters, a reduced number of HRUs for each sub-basin was obtained, even for the wide 

extension of the CEA. SOM is a technique increasingly used in water resources for different 

environmental datasets due to the robustness of the method (Kalteh et al., 2008). However, there 

is no evidence of the use of SOM in soil clustering for SWAT modelling. Several studies use a 

similar approach of soil clusters with SOM (Merdun, 2011; Rivera et al., 2015), but not for 

hydrological modelling purposes. Comparisons between taxonomic units and SOM for the 

SWAT model are expected to be included in future research. 
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Figure 23. Comparison of D-B index and mean Distance of soil map clustering in Self-Organizing Map 

(SOM) procedure. 

From the land use cover map series, more than 75,000 different crop rotation possibilities were 

found in the CEA system during the study period. To include more realistic crop rotations and 

facilitate management scheduling, the LUU field was updated using the SWAT2009LUU tool, 

considering only the nine most representative crops, covering in total 86% of total crops (Table 

8). As previously mentioned, the land use update of HRUs employs the (HRU_FR) variable, 

which allows us to consider the fragmented crop rotation patterns from remote sensing. This 

setup proposal results in a composite CN value of the HRUs. From CN values, patterns 

associated with row crops, such as potatoes (data not shown), present the highest CN values 

(higher runoff potential); this situation is also true for fallow land, while the opposite is true for 

forage cover (lower runoff potential). HRUs with HRU_FR of fallow land in more than 30% 

also present high CN values, and runoff is increased during rainfall events. Proportional values 

of CN by HRU could be provided by the different land use composition of the HRUs.  

Table 8. Cega-Eresma-Adaja (CEA) main crop rotation patterns during simulation period. 

Crop dominant  Number of crop patterns Percentage Area [ha] CN1 

Barley 19.762 26,11% 128.354 64,56 

Wheat 16.992 22,45% 109.940 63,13 

Fallow 7.493 9,90% 48.481 80,07 

Sunflower 7.183 9,49% 46.474 67,79 

Other cereals 5.480 7,24% 35.455 64,07 

Horticulture 3.096 4,09% 20.029 67,00 

Bean legumes 2.006 2,65% 12.977 67,80 

Forrages 1.809 2,39% 11.704 35,00 

Peas 1.082 1,43% 7.003 67,00 

Others crops* 10.786 14,25% 150.010 ----* 
1 Average calibrated of Curve Number (CN) value for different crops 

*Other crops include different land covers (forest and 17 other crops with different CN). 

The model setup for improvement of land use using the SWAT LUU tool results in a CN 

envelope for the HRUs. The composite value of CN is related with the amount of surface runoff 

in a HRU scale.  The CEA watershed CN is the average of CNs of the HRUs.  The average of 
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CN in CEA is 51.6, similar to mixed forest value of CN2 of the SCS method. In this case, the 

value of CN of an HRU is a result of grouped land covers. Normally, hydrologic models 

provide an insight into runoff causes and a reduced strategy in this way is expected to avoid soil 

erosion and nutrient transport (Bundy et al., 2008). Nevertheless, a strategy to reduce runoff is 

difficult to define at HRU level with a CN envelope, but the assessment of the runoff slowdown 

effect of crop patterns is plausible for decision makers using this approach. To this end, HRU 

analysis by sub-basins is required.  Individual land use fragmentation (plot detailed crop 

rotation) of HRUs is possible by increasing the complexity and computational requirements of 

the model.  Analysis of results in the fragmented HRUs dynamics is not reported in the 

literature and their analysis is limited to the assessment of global effect at sub-basin scale, due 

to the complexity and computational requirements to consider individual effect of the land cover 

over the HRU. 

3.2.2 SWAT model sensitivity analysis, calibration and validation 

Following Neitsch et al. (2002), a previous analysis was performed to detect the most influential 

parameters in the streamflow calibration process.  This process reveals that 25 parameters are 

the most sensitive to stream flow changes (Table 10). Parameters related with water dynamics 

of groundwater recharge (GW_DELAY, REVAPMN, ESCO, SHALLST, GWQMN and 

ALPHA_BF), runoff (OV_N, CN2 S, SURLAG) and infiltration (SOL_AWC) were 

respectively the most sensitive in the ranking. Similar parameters for sensitivity ranking were 

found in other Mediterranean catchments (Galván et al., 2009; Mateus et al., 2014; Salmoral et 

al., 2017). As in the present study, they also found that the GW_DELAY parameter is one of the 

most sensitive during the streamflow calibration process. This parameter is related with the 

lateral flow configuration between the root zone and shallow aquifer connection to the river bed, 

pointing out the importance of the shallow aquifer and main channel relationship in sub-arid 

zones. This situation is also reported for other Mediterranean catchments in France (Sellami et 

al., 2014), Spain (Jimeno-Sáez et al., 2018) or Turkey (Karnez, 2017). 

Table 9. Daily calibration and validation statistics for SWAT model. 

Statistical Index 
VFG LCFG 

Calibration Validation Calibration Validation 

R2 0.86 

(very good) 

0.85 

(very good) 

0.69 

(good) 

0.67 

(good) 

NS 
0.84 

(very good) 

0.82  

(very good) 

0.65 

(good) 

0.61  

(good) 

     

bR2 0.70 0.61 0.70 0.61 

PBIAS 
-10.8 

(good) 

-9.1 

(very good) 

-15,8 

(good) 

-18.6 

(good) 

     

KGE 0.84 0.86 0.70 0.71 

     

p_factor 0.63 0.61 0.57 0.53 

     

R_factor 0.39 0.37 0.22 0.21 
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Table 10. Summary of calibration parameters implemented with SUFI2. 

Parameter Definition Units 
Default 

range 

Calibrated 

value 

Sensitivity 

Ranking 
t-stat P-value 

GW_DELAY.gw Groundwater delay days 30 – 450 218.79 1 6.043 0.000 

OV_N.hru 
Manning‘s ―n‖ value for 

overland flow 
na 0.01 – 30 2.13 2 -3.168 0.002 

CN2.mgt 
SCS runoff curve number for 

moisture condition 2 
na (-0.2) – 0.2 0.32 3 -2.903 0.004 

REVAPMN.gw 

Threshold depth of water in the 

shallow aquifer for ―REVAP‖ to 

occur 

mm 0 – 500 534.74 4 -1.421 0.159 

SOL_AWC.sol 
Available water capacity of the 

soil layer 
mm/mm 0 – 0.5 0.54 5 -1.291 0.200 

SURLAG.bsn Surface runoff lag time days 0 – 24 10.41 6 -1.039 0.301 

ESCO.hru 
Soil evaporation compensation 

factor 
na 0 – 1 0.23 7 0.994 0.324 

SHALLST.gw 
Initial depth of water in the 

shallow aquifer 
mm 0 – 1000 612.32 8 -0.952 0.344 

GWQMN.gw 

Threshold depth of water in the 

shallow aquifer required for 

return flow to occur 

mm 0 – 5000 1.06 9 -0.925 0.357 

ALPHA_BF.gw Baseflow alpha factor days 0 – 1 0.057 10 -0.884 0.379 

LAT_TIME.hru Lateral flow travel time days 0 – 180 160.84 11 -0.843 0.401 

SLSOIL.hru 
Slope length for lateral 

subsurface flow 
mm 0 – 150 65.97 12 -0.723 0.472 

HRU_SLP.hru Average slope steepness m/m 0 – 0.6 0.28 13 0.688 0.494 

CH_K2.rte 
Effective hydraulic conductivity 

in main channel alluvium 
mm/hr 0 – 500 181.17 14 -0.636 0.527 

SOL_z.sol 
Depth from soil surface to 

bottom of layer 
mm 0 – 1000 776.57 15 0.544 0.610 

CH_K1.sub 
Effective hydraulic conductivity 

in tributary channel alluvium 
mm/hr 0 – 300 24.10 16 -0.607 0.546 

SLSUBBSN.hru Average slope length m 10 – 150 137.96 17 -0.595 0.553 

CANMX.hru Maximum canopy storage mm 0 – 100 57.62 18 0.387 0.699 

CH_N2.rte 
Manning‘s ―n‖ value for the 

main channel 
na 0 – 0.3 0.10 19 0.387 0.700 

CH_N1.sub 
Manning‘s ―n‖ value for the 

tributary channels 
na 0.01 – 30 5.54 20 -0.377 0.707 

EVRCH.bsn 
Reach evaporation adjustment 

factor 
na 0.5 – 1 0.85 21 -0.179 0.857 

GW_REVAP.gw 
Groundwater ―REVAP‖ 

coefficient 
na 0 – 0.3 0.08 22 0.166 0.868 

RCHRG_DP.gw 
Deep aquifer percolation 

fraction 
fraction 0 – 1 0.20 23 -0.076 0.939 

EPCO.hru 
Plant uptake compensation 

factor 
na 0 – 1 0.39 24 0.041 0.967 

PLAPS.sub Precipitation lapse rate mm/km 0 – 100 77.58 25 -0.016 0.987 

 

Another sensitive parameter is CN2 (3th place in the sensitivity ranking). This parameter is 

related with runoff of the watershed.  But the use of composite values of CN per HRUs is 

complex, as it allows us to include realistic crop rotation, which makes it difficult to define 

specific measures to manage the runoff per specific land use. Some of the uncertainty related 

with the runoff component of water balance is based on variability of HRU definition, and 

analysis of single HRUs is required.  

Daily stream flow performance during calibration (2004-2010) and validation (2011-2014) is 

compared in Table 9. According to the performance ratings established by (Moriasi et al., 2007), 

the VFG monitoring point fits a ―very good‖ class with an NSE of 0.84 (in calibration) and 0.82 
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(in validation). In the case of LCFG, although the values found are lower, it is still considered a 

―good‖ class streamflow performance. Similar values of NSE and R2 were also found in several 

SWAT hydrological calibration studies in Mediterranean watersheds (Dechmi et al., 2012; 

Galván et al., 2009; Mateus et al., 2014; Salmoral et al., 2017). For the quality model 

assessment, the PBIAS is considered good if its value is in the ± 25% range (Abbaspour, 2011). 

The resulting PBIAS for VFG is around -10% and for LCFG is around -18%. Accordingly, 

model performance is correct, although it underestimates values during the peak flows. 

The stream flow calibration and validation shows that VFG (Figure 24) is absolutely influenced 

by the operation of the reservoirs (Las Cogotas and Pontón Alto). If reservoir operation is not 

included, no more than an R2 of 0.13 could be achieved (series not shown).  

 

 

Figure 24. Observed and simulated daily streamflow using SWAT model for (a) VFG, (b) LCFG. 

It is important to note that the weather regime during the calibration and validation period is not 

balanced; the calibration was established over three wet years and the validation period was 

basically during dry years, Figure 25. Moreover, during validation the outflow series show a 

slight inaccuracy for peak events, when comparing observed and measured flows, resulting in 

underestimates. During dry years (2009 and 2013) these underestimations are more evident. On 

the other hand, calibration was settled with wet years (2007, 2008 and 2010). Considering the 

unbalanced weather regime in the simulation period, the statistical performance indices for 
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validation were expected to be less accurate. Nevertheless, flows are well fitted between 

simulated and measured LCFG and VFG for calibration and validation. The majority of the 

unadjusted values are inside the 95PPU band. 

 

 

Figure 25. Yearly watershed total volumes outlet and ecological flow in comparison to precipitation for 

(a) Eresma0Adaj watershed and (b) Cega watershed. 

Another point to consider is the situation when the model simulates low flow measures, between 

no flow and 0.4 m3/s. Nonetheless, the simulated zero flow situations are found in the 95PPU 

band. Thus, simulated low flows were in part responsible for negative values of PBIAS. Further 

analysis during very low flow days (measured data) is necessary (Bisantino et al., 2010; 

Skoulikidis et al., 2017). A calibration based on a seasonal scheme is needed (Ricci et al., 2018) 

and differentiated dynamic baseline flow could provide a strategy to follow (Arnold et al., 

1995). Although there are some studies that report very low flows in regulated rivers in Europe 

(Kirkby et al., 2011), or in Spain (Martinez - Capel et al., 2011; Salmoral et al., 2017), no 

discussion about this condition related with PBIAS is provided.  
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(a) Eresma-Adaja watershed outlet volumes 

2005 2006 2007 2008 2009 2010 2011 2012 2013
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It should be noted that LCFG is a gauging station that only depicts 25% of the Cega upstream 

watershed. Consequently, downstream hydrology of this point is not gauged, and only indirect 

evaluation is considered. After the LCFG point is where agricultural water demand increases. 

Further studies involving a methodology for ungauged watersheds are necessary to validate the 

Cega downwater calculations of the SWAT model results. 

3.2.3 Model uncertainty 

Model uncertainty is assessed through the statistical performance indices, P-factor and R-factor. 

Those indices are correlated and a balance must be achieved during the calibration process. 

Values of approximately 0.6 for P-factor and between 0.22-0.39 for R-factor, show the model 

uncertainty degree for the calibrated ranges of parameters. The suggested values are  >0.7 and 

<1.5 respectively (Abbaspour, 2013). Abbaspour‘s work noted that for P-factor and R-factor 

they should be as large as possible, although for large and regulated basins these values could be 

lower. Large-scale and very complex systems (hyper-regulated watersheds) present high 

variance due to climate conditions. P-factor and R-factor could be targeting close to the range 

values proposed by Abbaspour in 2004, but these parameters do not necessarily entirely explain 

the biophysical process. Modellers look for the balance between several factors: the objective 

function, the function weight, the initial and boundary conditions, and the type and length of 

measured data used to calibrate (Abbaspour, 2013). Consequently, the parameter-combination 

band is very complex in large watersheds; other research at daily time scale and large watershed 

also refers to values in the range of our P-factor and R-factor results (Begou et al., 2016; Roth et 

al., 2016).  Further study is needed on a sub-basin scale to expand on details to reach higher 

performance values of the uncertainties. 

3.2.4 Water balance 

The water balance components (Inflow, outflows and storage volumes) and values are 

represented in the schema of Figure 26, for each two sub-basins within CEA. 
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Figure 26. The SWAT model balance components of CEA subbasins. Cega river (left) and EA(Eresma-

Adaja) (right). 

The streamflow/rainfall ratio for regulated catchments is usually lower than in watersheds with 

natural flow. This statement is borne out in the present study, with a ratio of 0.14 for EA 

(regulated) and 0.18 for Cega (unregulated). Similar values were reported for different 

Mediterranean basins (Merheb et al., 2016). This situation highlights the implications of 

streamflow regulation in catchments similar to EA and Cega. Thus, reservoir regulation rules 

must be seasonally compared to maintain similar runoff ratios between regulated and 

unregulated stream regimes in these similar catchments. This could be a target to preserve the 

natural streamflow behaviour in spite of the regulation of large headwater reservoirs. 

Streamflow volume is a key element for river authorities. The model estimates a streamflow of 

59.4 mm/yr for EA and 82.5 mm/yr for Cega. Similar results were reported by the DURERO 

project (Vicente Gonzalez et al., 2016) for the whole Douro watershed, with a streamflow value 

of 60.8 mm/yr. The more accurate water balance in ungauged areas of the watershed provided 

by the present study could serve as complimentary information for planning purposes at the 

local scale. 

Runoff is a complex component, being the sum of surface runoff and the river baseflow. The 

latter is the contribution of lateral flow and the groundwater return flow.  In this case, the 

groundwater contribution to the baseflow is higher than the surface runoff, as shown in Table 

11.  During dry years or dry seasons, the disconnection between riverbed and aquifer is more 

frequent; this causes very low stream flows.  The situation is evident in stream flow series and 

in the decrease of groundwater level in piezometers. 

 SWAT model results show that the CEA system is a deficit watershed. The negative average 

net balance (-850.2 mm/yr) proves it during the simulation period. The comparison of the 
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potential evapotranspiration (ETP=1,192.1 mm/yr) and real evapotranspiration (ET= 341.9 

mm/yr) shows a large water deficit (Table 11). The simulation results for CEA indicate on 

average that only 15.7% of precipitation is converted into surface flow. This finding indicates 

that all processes during the soil-plant-atmosphere interaction (>80%) are quantitatively more 

relevant than surface flow. For this reason, the vadose zone interface is a key factor in water 

dynamics in the CEA and merits more in-depth study. For more details on simulation ratios of 

hydrophysical processes, see supplementary material Annex 9. 

Table 11. Water balance components for Eresma-Adaja and Cega watersheds with SWAT model. 

Type 

  

Period Calibration Validation 

Simulation 

mean values 

Hydrologic 

Year 
2005 2006 2007 2008 2009 2010 2011 2012 2013 

year type Average Average wet wet dry wet average average dry 

Eresma-

Adaja 

Precipitation 368.2 424.0 491.0 583.6 326.5 485.8 374.1 386.4 303.5 415.9 

ETP 1346.8 1272.1 1162.4 1154.3 1315.1 1193.8 1298.0 1301.1 690.5 1192.7 

Deficit 978.6 848.1 671.4 570.7 988.6 708.0 923.9 914.7 387.0 776.8 

ET 269.5 413.8 409.3 389.7 332.2 363.6 362.1 294.0 219.2 339.3 

Flow 29.8 49.4 68.4 81.5 59.9 59.5 57.0 33.9 95.2 59.4 

VFG-Flowobs 29.31 48.54 67.2 80.09 58.89 58.44 56.04 33.28 80.79 57.0 

Surface runoff 13.2 15.4 24.1 25.9 10.2 16.8 13.6 14.4 11.3 16.1 

Baseflow 16.6 34 44.3 55.6 49.7 42.7 43.4 19.5 83.9 43.3 

Deep aquifer 

recharge 
3.05 3.51 4.07 4.83 2.70 4.03 3.1 3.2 2.51 2.81 

Soil storage 13.45 15.48 17.93 21.31 11.92 17.74 13.66 14.11 11.08 15.19 

 

SAV + 

Reservoir 

regulation 

52.4 -58.19 -8.7 86.26 -80.22 40.94 -61.76 41.19 -24.49 -0.8 

Cega 

Precipitation 366.7 473.5 498.4 583.5 386.5 558.2 373.0 404.3 376.0 446.7 

ETP 1345.2 1248.1 1133.5 1127.4 1303.9 1176.3 1334.7 1333.0 717.3 1191.1 

Deficit 978.5 774.6 635.1 543.9 917.4 618.1 961.7 928.7 341.3 744.3 

ET 274.7 420.9 425.9 394.9 325.1 371.5 355.0 319.4 235.2 346.9 

Flow 34.4 64.0 90.9 106.5 86.6 118.7 60.9 42.9 137.7 82.5 

LCFG-Flowobs 144.42 269.14 382.02 447.77 363.89 498.76 255.74 180.11 507.83 338.85 

Surface runoff 12.3 15.6 20.2 20.7 11.2 17.3 11.6 12.6 12.7 14.9 

Baseflow 22.1 48.4 70.7 85.8 75.4 101.4 49.3 30.3 125 67.6 

Deep aquifer 

recharge 
4.23 5.46 5.75 6.73 4.46 6.44 4.3 4.66 4.33 5.15 

Soil storage 13.39 17.29 15.56 21.31 14.11 20.39 13.62 14.76 13.73 16.31 

 SAV 39.28 -34.15 -39.71 54.06 -43.77 41.17 0.08 65.48 122.74 78.34 

Values in [mm/yr] 

Note: VFG-Flowobs: observed flow at Valdestillas Flow gauge; LCFG-Flowobs: observed flow at Lastras 

de Cuellar Flow gauge; ETP: potential evapotranspiration; ET: evapotranspiration; Flow: simulated flow; 

Surface runoff: simulated surface runoff; SAV: Shallow aquifer variation. 
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The CEA system is a large sub-basin of the River Douro with a variety of landscapes, which 

suggest that water balance is not homogeneous in the system. Three zones were defined based 

on environmental experts‘ knowledge of landscapes and water management (Figure 27).  

SWAT model results show that Cega highlands present the highest rainfall in comparison of 

Eresma-Adaja watershed headwaters. Regarding this difference, it is important to note that 

stream fluxes are different in volume and water management could be different in middle and 

lowland areas. In addition, Cega has an absence of regulation infrastructures. Peak flows and 

flashes were more frequent in the Cega River; these events were reported in communication 

media during the simulation period. The Eresma-Adaja river tributary zone presents lower 

rainfall volumes, suggesting that tougher conditions of scarcity could be located in this zone. 

This suggests that agriculture in this zone is more feasible under a rainfed regime.  

 
Figure 27. Mean annual water balance components of CEA subbasins. Values in [mm]. ET (real 

evapotranspiration), ETP (potential evapotranspiration), SURQ (surface runoff), LAT_Q(lateral flow), 

GW_Q(ground water recharge). Headwaters in the south and low lands in north-west. 

In contrast, potential evapotranspiration shows a differentiated trend of higher values in the 

lowlands and lower in the headwaters. The average ETP of all land covers in the headwater 

shows a lower value compared to the lowlands, which is due to altitude, predominance of forest 

(stomatal resistance to ET) and lower temperatures during the spring-summer period. Moreover, 

real evapotranspiration values in the southern west of Eresma-Adaja are more affected by the 

recent agricultural development in this area, allocating a pressure in water demand in this area 

that affects the Eresma-Adaja water availability in the middle and lowlands.  
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In general, surface runoff in volume is less than groundwater fluxes in both watersheds 

(Eresma-Adaja and Cega). However, this relation is true in the lowlands and midland, but 

different in the headwaters due to water movement through the soil. The roughness of forest and 

pastures in headwaters for surface runoff slows down the flux. These fluxes enter these shallow 

soils until they meet rocks and start moving by gravitational forces as lateral flows. This 

situation limits the deep aquifer recharge in headwaters. The opposite processes of recharge 

occur in the midlands, where the materials are sandy composites, soil depths are higher and 

slopes are more flattened. Deep aquifer recharge is higher in the Cega River than in Eresma-

Adaja, as higher volumes of lateral flow that comes from the headwaters infiltrates the sandy 

soils. Lateral flow in headwaters of Eresma-Adaja (south west) could be increased by changing 

the land use to natural forest covers and pastures. Reservoir and agricultural demand in the 

Eresma-Adaja headwaters limit the lateral flow and the deep aquifer recharge in the midlands.  

Annual water balance shows that there is no water surplus to support new demands, including 

the expected 18% irrigation expansion (49 hm3/yr). Moreover, a tendency of decreasing 

precipitation is an issue that the watershed must be adapted to. Capture of precipitation peak 

events with more reservoirs, as suggested by stakeholders, will have a negative impact on 

stream flow and consequently on aquifer recharge and soil water scarcity of the ecosystem. In 

sub-arid watersheds, the reservoirs limit riverbed water transfer to aquifer in the downwaters, 

resulting in a lower water table without capillarity contribution to bottomland crops (Lin, 2011). 

This effect could be expected in a reduction of groundwater ―revap‖ volume to plants. This 

situation in CEA could affect ―Tierra de Pinares‖, a valuable ecosystem of conifer forest (900 

ha) in watershed midlands that are rooted connected (2 m deep) to the water table. 

3.2.5 CEA water demand assessment 

According to our results, 86.64% of water demand for the CEA is allocated to agricultural 

purposes. Figure 28 shows the average real evapotranspiration (ET) of HRUs during simulation 

and the area of the dominant rotation crop pattern (9 crops). Annual rainfed crops use on 

average the same water compared to the permanent crops, but annual rainfed crops consume this 

amount of water in only 5-6 months. Furthermore, during the rest of the year when precipitation 

events are more frequent, fallow land contributes to reduce shallow aquifer recharge. This 

dynamic is explained by the runoff being privileged in slope land > 5%. During the rotation 

schema, fallow land is characterised by the lack of surface roughness, causing a quick response 

with the precipitation-runoff process. This situation prevents a prolonged time of infiltration 

before the start of surface runoff. Vegetated cover could be used to slow down runoff and 

increase water use efficiency. Vegetated cover is a strategy to be included in crop rotation 

schemes, mainly in schemes that include annual rainfed and irrigated row crops for 

Mediterranean watersheds (Taboada-Castro et al., 2015). Water efficiency can be achieved, but 
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only if annual ET of vegetated cover is approximately 350 mm/yr. This assertion is based on 

permanent crop average water consumption. In addition, ET for vegetated cover for inter-annual 

rotations could be approximately 16 mm/month during the fall-winter period and 42 mm/month 

during the spring-summer period. 

 

Figure 28. Summary of land use water demand in Cega-Eresma-Adaja (CEA) watershed simulated with 

SWAT: Evapotranspiration (ET), mean ET and water volume (Volume). 

Irrigated crops represent the major water consumption use. A strategy to spatially redistribute 

crop area in quantity provides a feasible solution to homogenise agricultural water demand. 

Similar to the situation in rainfed crops, the CEA watershed needs to decrease agricultural 

irrigation area that uses more than 350 mm/yr, including crops that demand less water. Focus on 

barley dominant patterns could be an insight to achieve a balanced water demand. In addition, 

an economic analysis is also needed to assess a more convenient solution to reduce agricultural 

water consumption. 

Deep aquifer simulated recharge is estimated at 2 mm/yr (15.7 hm3/yr). On average, a rate of 

25.4 mm/yr (196.26 hm3/yr) was used for irrigation during the simulation. Comparing this value 

with the agricultural water demand established by RBMP (170.42 hm3), there is a difference of 

26.26 hm3 (3.34 mm/yr) that could be extracted from aquifers. This finding indicates that 

possibly shallow aquifers and deep aquifers have been used to extract 26.26 hm3, but only 15.7 

hm3 comes from renewable resources. The overexploitation is more associated with the 

groundwater bodies of ―Los Arenales‖ located downstream, and it is difficult to measure global 

overdraft due to shared boundaries with other watersheds. Further developments of aquifer 

recharge could be provided by simulating the entire watershed and aquifer shares with SWAT 

and MODFLOW. 
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Most of the groundwater recharge is related to wheat and pasture land cover patterns. In 

addition to aquifer recharge, groundwater quality tracking in these sandy soils is mandatory. 

Diffuse pollution of aquifer in this zone is very sensitive, and responsible for the poor status of 

the water bodies. Fertilisation operation in wheat and pasture improvements needs to be 

included in further studies on this issue. This situation is also related to diffuse pollution of 

groundwater bodies due to the fertilisation rates and timing. In SWAT, the CN is relatively easy 

to manipulate, and any strategy or measure to reduce runoff can be included in the model. 

Hence, priority strategies for runoff control in potato and barley are needed. See supplementary 

material Annex 10. 

3.3 Vegetation dynamics 

3.3.1 Soil reflectance statistics 

The descriptive statistics of the spectral bands at the time that bare soil is predominant are 

shown in Table 12. For both zones, SOM5 and SOM15, skewness and kurtosis values are in the 

range of -2 to +2, indicating that the band samples probably come from a normal distribution. 

However, to confirm normality of these values Shapiro-Wilk and Kolmogorov-Smirnov tests 

were conducted with a positive result (see Table 12). Observing the mean values of the spectral 

bands studied, always SOM5 presents lower values than SOM15. 

Table 12. Statistics of MOD13Q spectral bands series for SOM5 and SOM15 for the 18th of February 

associated to bare soil as predominant condition for the period 2000 to 2019. 

 Reflectance bands 

 NIR RED Blue MIR 

SOM soil unit 5 15 5 15 5 15 5 15 

 Bare soil (February 18th) 

Mean 0.294 0.343 0.133 0.161 0.063 0.076 0.177 0.232 

Typical error 0.009 0.011 0.004 0.006 0.002 0.003 0.011 0.016 

Median 0.290 0.332 0.136 0.161 0.064 0.076 0.185 0.222 

Standard deviation 0.038 0.051 0.018 0.028 0.010 0.012 0.049 0.071 

Kurtosis -0.553 -0.707 -0.122 -0.906 -0.548 -0.636 -1.184 -0.421 

Skewness 0.005 0.412 -0.607 0.006 -0.229 -0.217 -0.331 0.583 

Count 20 20 20 20 20 20 20 20 

Normality test 

Shapiro Wilk          

Statistic 0.932 0.922 0.955 0.965 0.971 0.973 0.964 0.959 

P-value 0.170 0.108 0.442 0.644 0.971 0.808 0.624 0.523 

Kolmogorov-Smirnov 

P-value 0.776 0.749 0.932 0.898 0.934 0.912 0.969 0.987 

 

The dates in which tillage operations match with sensed dates serve as references to assess and 

compare the soil reflectance from SOM5 and SOM15. From those dates, analysis of variance 

(ANOVA) was performed, indicating that there are significant differences between the two soil 

units across all the single bands (Table 13). These results suggest that the mean confidence 
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intervals between SOM5 and SOM15 of reflectance responses are statistically different (Figure 

29) confirming the difference of both soils. 

Table 13. Analysis of variance (ANOVA) showing significant statistical differences (p-value < 0.01) for 

single bands (NIR, Red, Blue and MIR) for the two soil units SOM5 and SOM15. 

Source 
Sum of  

Squares 

Degrees of 

freedom 

Mean  

Square 
F-Ratio P-Value 

NIR      

Between SOMs 0.024 1 0.024 11.93 0.001 

Within SOMs 0.078 38 0.002   

Total (Corrected) 0.103 39    

Red      

Between SOMs 0.008 1 0.008 14.67 0.001 

Within SOMs 0.021 38 0.001   

Total (Corrected) 0.029 39    

Blue      

Between SOMs 0.002 1 0.002 13.51 0.001 

Within SOMs 0.005 38 0.000   

Total (Corrected) 0.006 39    

MIR      

Between SOMs 0.030 1 0.030 8.03 0.007 

Within SOMs 0.142 38 0.004   

Total (Corrected) 0.172 39    

 

 

 
Figure 29. Intervals of confidence plots from the Least Significant Difference test (LSD) for SOM5 and 

SOM15. a) NIR*, b) Red*, c) Blue*, d) MIR* mean band values and, e) NDVI**.  *for February the 

18th;** Growing season. 
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The estimation of BSL for both zones presented different values (Figure 30). The SOM5 unit 

presents a higher slope value than that of SOM15. The P-value < 0.05 for the ANOVA test 

applied to these results confirms statistical differences in slopes and intercepts (Table 14). 

Table 14. Statistical significance of bare soil lines (BSL) for SOM5 and SOM15. 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Intercepts 0.0016 1 0.0016 79.53 0.0000 

Slopes 0.0001 1 0.0001 4.46 0.0383 

 

 

 

Figure 30. Soil lines for SOM5 and SOM 15 soil units. NIR and Red values for February 18th in the 

period 2000 to 2019. Slope of linear regression indicates bare soil line (BSL) value. 
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3.3.2 NDVI statistics 

NDVI series patterns for SOM5 and SOM15 are shown in Figure 31. From October to February 

there is a smooth increase. Then, March and April present significant increases in the NDVI 

values followed by a decrease during May and June when the crop cycle finished. The range of 

mean NDVI values in the yearly cycle goes from 0.22, in a wide part of fallow, till 0.60 at the 

end of April.  

 
 
Figure 31. Average of NDVI every15-days for monoculture cereals crop cycle of SOM5 and SOM15 in 

comparison with precipitation for the period 2000 to 2019. 

The rain series patterns are shown in Figure 31 too. The months with highest rain are October, 

April, and May for both sites. Looking at Figure 31 and at Table 2, SOM5 presents a higher 

precipitation than SOM15 in almost all the months. However, during the crop cycle the highest 

NDVI values are achieved at SOM15. When an ANOVA is applied to the average NDVI value 

of the crop cycle, March to June, of each zone a significant difference, with a confidence level 

of 99% and p-values < 0.01 (Table 15), is obtained. This confirms the visual observation of 

Figure 31.  

Table 15. Analysis of variance (ANOVA) of NDVI for the two sampling sites SOM5 and SOM15 using 

the average index value of the plots for each sensing date range between March and June from 2000 to 

2019. 

 

 

 

 

 

Source Sum of 

Square

s 

Degrees of 

freedom 

Mean 

Square 
F-Ratio P-Value 

NDVI 
     

Between SOMs 0.112 1 0.112 10.15 0.002 

Within SOMs 2.635 238 0.011 
  

Total (Corrected) 2.747 239 
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To study the correlation of both variables, NDVI and precipitation, first they were accumulated 

from January till May for each zone (Figure 32). There is a linear relation between the 

accumulated precipitation and the accumulated NDVI values with a R2 higher than 0.95 in both 

sites. However, the slope of each one present unique value. 

 
Figure 32. Linear correlation between accumulated values of precipitation and NDVI from January to 

May. 

Linear correlation between accumulated values of precipitation and NDVI from January to May. 

Finally, both NDVI original series did not present a significant trend in the range of years study 

in this work at a confidence level of 0.05 (             ). 

3.3.3 Scaling characteristics of NDVI original series 

The NDVI original series for each zone are showed in Figure 33a. The yearly cycle is easily 

recognized with valleys presenting values around 0.2 and peaks that some years are above 0.6 

and other presents lower values. In SOM5 there is a clear year, 2009, with the lowest values of 

NDVI that in SOM15 does not present. However, in SOM15 there is a peak in 2000 and low 

NDVI values in 2009 and 2014. 

The multiscaling analysis of both sites is showed in Figure 34. The scaling pattern was obtained 

approximately with lags from 1 till 8, corresponding to 16 days till 4 months approximately. 

Both present a strong persistent character with a GSF above the straight line of the uncorrelated 

noise. As we can see in the Generalised Hurst exponents (GHE), they present a significant 

variation in the Hurst exponent depending on q value showing their multifractality. This can be 

observed in the difference of both extremes (H(q)) showed in Table 15 for both sites. In all the 

parameters, SOM5 presents higher values than SOM15. 
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The NDVI original signals present a global seasonal pattern in which monoculture sequence 

was clearly identified and all years where planted. The variability involved in the process (i.e., 

climate, crop types and soils) are continuously changing in time or exhibit trended behaviour, as 

presented in the former section. This was observed by analysing their overall variability across 

the study period. 

The persistent condition of the NDVI signature is mainly coming from the yearly cycle that 

composes its pattern. The noise in cereal sequences may be due to different mechanisms, as 

reported by other authors (Igbawua et al., 2019; Liu and Huete, 1995). As both sites selected 

presented cereals, the difference can only be attributable to climatic conditions, wet or dry 

years, terrain slopes or seed varieties. Other sources of noise can be attributable to soil 

brightness; when soil brightness increases during the fallow season period, the NDVI can be 

lower. The former was also corroborated from July to February and distinguished the dry and 

wet periods by seasonal behaviour (Figure 33a). However, during the growing season, most of 

the reflectance comes from vegetation and not from soil. 

The scaling property of these NDVI original series agrees with earlier works in which the 

persistence condition for crops is also reported through H(q=2) or Hurst index using R/S 

method (Liu et al., 2019; Peng et al., 2012). However, the results have shown that this series 

could have a multifractal nature. Li et al., 2017 and Ba et al., 2020 investigated the vegetation 

dynamic of areas affected by the fire through multifractal analysis achieving the same 

conclusion. Several parameters can be calculated, as the ones showed in Table 16, given more 

possibilities to classified the NDVI series studied. 

This multifractal analysis in NDVI have been wider used in the spatial scaling context (Alonso 

et al., 2017; Duffaut Espinosa et al., 2017; Escribano Rodríguez et al., 2015; Lovejoy et al., 

2008; Martin-Sotoca et al., 2018). 

Looking at the common Hurst index (H(q=2)), both series present persistent values of 0.70 in 

SOM5 and 0.70 in SOM15. As both GSFs present a slight curvature and H(q=1) is higher than 

0.50 the extraction of the seasonal trend is recommended (Davis et al., 1994). 
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Figure 33. NDVI time series from SOM5 (right column) and SOM15 (left column): (a) NDVI original, (b) NDVI residual, (c) NDVI anomaly. 
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Figure 34. Generalized Structure Function plots for NDVI original series of SOM5 (left column in blue) and SOM15 (right column in red) for: (a)  ζ(q) curve and (b) Generalized Hurst 

exponent H(q), continuous line correspond to non-correlated noise with Hurst value of 0.5. 
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3.3.4 Scaling characteristics of NDVI residual and anomaly series 

Once that from the original NDVI series the seasonal cycle has been extracted, NDVI residual 

series present a different pattern (Figure 33b). All the differences are in the range of 0.25 and -

0.25, pointing out with positive values the moments above the mean for that date of the year and 

with negative values the moments under the mean for that date of the year. The observations 

mentioned in the NDVI original series are more marked here. The highest negative value is 

found in 2009 in SOM5 and the highest positive value is founded in 2000 in SOM15. 

The GSF and GHE reflect the change in the pattern of these series (Figure 35). Again, the 

scaling behaviour is founded from 16 days till 4 months. Both present a strong anti-persistent 

character with a GSF under the straight line of the uncorrelated noise. As we can see in the 

Generalised Hurst exponents (GHE), they present a significant variation in the Hurst exponent 

depending on q value showing their multifractality. This can be observed in the difference of 

both extremes (H(q)) showed in Table 16 for both sites. Both curves, GSF and GHE, are 

similar for both sites. However, SOM15 presents higher values than SOM5 but very similar 

H(q). 

Table 16. Multifractal parameters for each zone and each one of NDVI series. H(q=1), generalized Hurst 

index for q=1; H(q=2), generalizes Hurst index for q=2; ΔH(q)=H(q=0.25)-H(q=4). 

ZONE NDVI SERIES H(q=1) H(q=2) Δ H(q) 

SOM5 
Original 0.78 0.70 0.40 

Residual 0.41 0.37 0.12 

anomaly 0.40 0.37 0.09 

SOM15 
Original 0.80 0.70 0.40 

Residual 0.46 0.43 0.14 

anomaly 0.37 0.34 0.09 

Looking at the common Hurst index (H(q=2)), both series present anti-persistent values of 0.37 

and 0.43 in SOM5 and SOM15 respectively. 

The NDVI anomaly series have been obtained applying a z-score to the NDVI original series 

and present a similar pattern that NDVI residual one (Figure 33c). Comparing these last two 

series, the z-score has a smooth effect as it has been divided by the standard deviation of the 

NDVI values of that date. Therefore, dates with high SD reduce the value obtained in the 

anomaly series compare to residual one. 

This effect of smoothing in certain dates of the z-score is reflected in the multifractal parameters 

obtained. The GSF and GHE presents less curvature and a visual inspection reflect almost a 

straight line (Figure 36). Again, the scaling behaviour is founded from 16 days till 4 months. 

Both present an anti-persistent character with a GSF under the straight line of the uncorrelated 

noise.
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Figure 35. Generalized Structure Function plots for NDVI residual series of SOM5 (left column in blue) and SOM15 (right column in red) for: (a)  ζ(q) curve and (b) Generalized Hurst 

exponent H(q), continuous line correspond to non-correlated noise with Hurst value of 0.5. 
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This can be observed in the difference of both extremes (H(q)) showed in Table 16 for both 

sites showing a value lower than 0.10. Both curves, GSF and GHE, are similar for both sites. 

However, SOM5 presents higher values than SOM15, as the NDVI original series.  

Both series present anti-persistent values in H(q=2), of 0.37 in SOM5 and 0.34 in SOM15. 

These values are higher than in the case of NDVI residual series. Therefore, NDVI anomaly 

series are less anti-persistent and with a weaker multifractal character than NDVI residual 

series. 

Thus, the most noticeable source of noise in NDVI residual series, in cereal crops once that 

cycle average pattern has been extracted from the original series, is the reflectance variation 

under different soil moisture conditions. These, in turn, are related to the rainfall variation from 

its cycle average pattern and the properties of the soil against the rainfall regime. This situation 

is especially evident when analysing the reflectance values of the red and NIR bands. 

Accordingly, NDVI residual signal results in a mixture of noises coming from both spectral 

bands. 

A visual observation of NDVI residual series (Figure 33b) in both sites remind to a residual 

noise. However, this noise exhibited a scaling behaviour pointing out a structure and, therefore, 

it is not an uncorrelated noise. Even more, NDVI residual series presents multiscaling behaviour 

as the GSF and the GHE are not straight lines. This implies that once the clear seasonal pattern 

is extracted from NDVI series, the residual has still structure, but antipersistent, keeping the 

multifractal nature from the original series. The MFA normally used by some authors (Igbawua 

et al., 2019; Li et al., 2017) applied a detrended fluctuation analysis as many of the series 

analized presented a significant trend in time. In this work, the two series analised did not 

present a significant trend, the detreded applied was to extract first the average cycle pattern and 

then the GSF was calculated. This is a different way to approach the study but more suitable for 

monoculture crops. 

NDVI anomaly series presents a smoother behaviour than the residual one. This is reflected in 

more straight lines in GFS and GHE that originate a weaker multifractal nature in these series 

but keeps the antipresistant character.  This is revealing that the different dispersion of NDVI 

values in each date has an influence in the multifractal character of the series. The higher 

dispersion is presented in the crop cycle during seasons where the rain presents higher 

dispersion too. This point out that NDVI anomaly series is reflecting the variability created 

mainly by the rain interacting with the characteristics of that site. The analysis of this type of 

series could be another factor to be incorporated in the agroclimatic zone definition as it is 

adding an evaluation of the crop risk. 
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Figure 36. Generalized Structure Function plots for NDVI anomaly series of SOM5 (left column in blue) and SOM15 (right column in red) for: (a)  ζ(q) curve and (b) Generalized Hurst 

exponent H(q), continuous line correspond to non-correlated noise with Hurst value of 0.5. 
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3.3.5 Agroclimatic zone and NDVI patterns 

NDVI series in this case covers two reflectance surfaces, bare soil from inter-crop period (i.e., 

fallow) and cereal crop season. From the first one, is clearly defined and is the date on which 

bare soil is completely exposed to the atmosphere is after tillage operations. On these dates, 

analysis of variance indicates that the SOM5 and SOM15 units are spectrally different. This 

situation is probably true due to topsoil soil property differences (textural, physical, and 

chemical) and can be supported by the SOM soil unit algorithm data. From Table 2, which lists 

the topsoil properties of SOM5 and SOM15, the clay and sand contents are the main properties 

that vary between the soil units. There is an agreement between low clay content and high 

reflectance values. Similar findings were reported using Landsat sensors by (Demattê et al., 

2009), who stated the usefulness of band data to quantify topsoil attributes related to a previous 

soil classification, such as clay content. 

However, the previous soil moisture condition is essential and influences the soil reflectance of 

each band (Kaleita et al., 2005; Lobell and Asner, 2002). Furthermore, reflectance differences 

are also observed between the years. This result can be compared by analysing the subbasin 

precipitation regime (see Figure 31). From this, we can suggest that reflectance is not only 

different between soil units but also important, bearing in mind that previous soil moisture 

conditions influence reflectance in soils. This was described in the early 2000s by (Muller and 

Décamps, 2001). Nevertheless, the least significant difference (LSD) plots of Figure 29 consider 

the soil moisture state under the two situations, both with dry soil and wet soil years. The 

reflectance of dry soil is frequently higher than that of wet soils (Mzuku et al., 2015; Weidong 

et al., 2002), and in this case, SOM15 site is drier than SOM5. This is because some moisture is 

needed for tillage, and in SOM5, most of the previous days were rainy days. This situation 

suggests that bare soil reflectance can also be different due to a combination of soil properties 

and the soil moisture content. However, the mean difference in the LSD plots of bands over a 

20-year period with diverse previous conditions of soil moisture remains different. The 

reflectance differences are also corroborated by comparing the BSL from each site, in which the 

slopes are also different (Figure 30). The slope in SOM5 is higher than that in SOM15. 

In this sense, the SOM5 unit and SOM15 exhibit two fundamental elements of differentiation 

from the classical statistics of bare soil reflectance. The first one is related to the intrinsic 

physical soil properties attributable to each soil unit of the classification. The second is related 

to the weather regime, specifically accentuated on the soil wetting behaviour of precipitation. 

Soil saturation can be reached several times when precipitation rates exceed infiltration rates in 

the case of SOM5, also because spring storms exceeded 50 mm/month for all years except 2002, 

2005, 2011, 2015 and 2019 (Rivas-Tabares et al., 2019b). This situation can be an effect of soil 
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affecting the maximum value of NDVI over the growing season of cereals in SOM5. However, 

in areas in which the vegetation response is highly influenced by rainfall, the variations in 

NDVI can also be attributed to other agronomic management practices of crops (e.g., trends 

towards earlier sowing, nitrogen fertilizer rates, or semi-dwarf varieties with high early vigour, 

etc.) as reported in wheat fields with Mediterranean environments (Smith et al., 1995). In the 

area, barley and wheat varieties are quite similar year by year (Llera, David A. Nafría et al., 

2013), and only timing management (i.e., 1 – 2 weeks lag) is the main source of variability and 

is related to crop timing. 

For the reflectance during crop season, the NDVI averages from SOM5 and SOM15 are 

significantly different as shown in Table 14. These results suggest that the NDVI signal is also 

different between the zones, suggesting that soils and weather conditions are motivating the 

spectral variability of sites. The NDVI pattern differences of SOM5 and SOM 15 are due to a 

mixture of biophysical processes over time and space. The spatial domain is mostly related to 

soil properties, and the timing domain is related to the atmospheric interaction of the soil-crop, 

mainly in relation to rainfall. SOM5 is a soil with higher clay content and is exposed to higher 

rainfall rates during the spring, and SOM15 is more like a sandy soil and exhibits a drier spring 

than that of SOM5. However, SOM15 reaches maximum values of NDVI during the growing 

season of cereals between April and May, depending on intra- and inter-annual variability. 

Similar results were found in the NDVI series comparing different vegetation covers at the 

regional scale (Martínez and Gilabert, 2009). 

The different slopes obtained from the regression of accumulated NDVI against accumulated 

precipitation (Precp), shown in Figure 32, confirm the differences in the vegetation response to 

both agroclimatic conditions. The slope can be interpreting as how much NDVI is achieved 

per Precp. Higher slope implies that for a certain Precp the NDVI will be higher. In this 

sense, SOM15, with sandy soils, obtain a higher NDVI than SOM5, with clay soils, for each 

Precp. In summary, there is a linear relationship between the accumulated NDVI with respect 

to accumulated precipitation, and the slope of this relation could be related to soil characteristics 

as the temperature in both sites is very similar. This higher correlation between NDVI and 

accumulated precipitation can be found in other works on Mediterranean zones (Al-Bakri and 

Suleiman, 2004). 

On the other hand, high precipitation during the growing season, in combination with clay soils 

of SOM5 can advance crop development during the first months. By the end of the growing 

season, in SOM15, with less accumulated precipitation, accumulated NDVI reach similar values 

to SOM5 once that a total rainfall of 250 mm is accumulated. Despite accumulative NDVI is 

similar in both cases, the growth is altered by water availability and soil characteristics.   
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3.4 Participatory Land Use Land Cover modelling  

To assess LULC scenarios into quantitative maps, two main products were developed: the 

mapping template, for spatial location of the changes to create LU maps, and the crop rotation 

template, that allows extracting and completing crop cycles and its management across different 

crop sequences. 

3.4.1 LULC scenarios 

The interpretation of crop rotation maps from ITACyL, form a group up to 7.000 different 

rotational crop sequences considering individual parcels (series not showed). However, the 

sequence was reduced by identifying recurrent patterns in 5 years cycle basis. The crop rotation 

types (1-6) were defined based on remote sensing identification and grouping by major 

frequencies and area representativeness, see Figure 37. Each pattern represents the most 

common cropland rotation system in case study. 

 
Figure 37. The six cropland rotation patterns (C.R. TYPE #) identified from remote sensing in subbasin 

443, ―Arroyo de la Balisa‖. The sowing dates are in red lines, the harvest dates in yellow line and the 

hydrologic year bounds in blue lines. 
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The LULC scenarios from stakeholder mapping activity of the LU distribution are showed in 

Figure 38. However, it represents a general overview of the LU and the final land dynamics 

include also the land management of cropping patterns at HRU level. The agricultural land is 

the more dynamic LU for the analysis period and most of the variations are attributable to this 

LU. The rainfed agricultural land is the major change across the scenarios followed by 

grassland. Another change is the lightly increase of irrigated agriculture in LBA scenario. Due 

to the expansion of irrigation schemes in the basin, some plots are from the moment planned to 

be irrigated in the area following the River Basin Management Plan (RBMP). Urban and forest 

land covers were mainly accorded from stakeholders as constant LU in the three scenarios for 

this sub-basin. It‘s also important to note that fallow as LU in baseline scenario represent a 

bigger area (7.94%) respect to LSH (0.24%), LBA (0.24%) and LSP (0.24%).  

 

Figure 38. Land use distribution for the scenarios land sharing (LSH), land balance (LBA) and land 

sparing (LSP) in comparison to Baseline scenario (BASE) for the subbasin studied (―Arroyo de la Balisa 

- AdlB‖). 
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The fallow practice in rainfed productive systems, in central Spain, is a common and important 

practice of actual cereal scheme (Alonso, 1980; Moret et al., 2006). This practice was considered 

in this study only as an intermediate practice during yearly crop rotation scheme. Regularly, the 

fallow is also considered as a yearly or two-years practice in the rotational schemes. However, 

stakeholders‘ perception was directed to reduce it using crop rotation strategies to compensate the 

nutrient cycling and soil properties recovery. The yearly fallow suppresion in management 

schedulling tries to respond to a very common questioning for different stakeholders. There are 

three main reasons: (a) low area representativeness from the total area, (b) in Duero‘s middlands 

responds especially to a farmer decision (schedulling, soil fertility and water storage, market 

behavious of rainfed products and machinery disposal) and (c) cereal under monocrop situation 

as a historical extensive practice. 

The crop rotation dynamics over the 16 HRUs represents the active and variable fact across the 

scenario assessment. The sequences were assigned in order to preserve the actual pattern plus the 

adjustment of workshop translation to storylines. The resulting crop rotation sequence for the 16 

HRUs of each LU scenario are showed in Figure 39. The major LU change sequence dynamics 

from Figure 39 is evidenced in LSH scenario, where 8 HRUs are fixed with grassland cover for 

all years of the simulation period. In LSP, monocrop sequences are fixed in six HRUs including 4 

grassland HRUs. There are some HRUs for irrigation crop, three in the LBA scenario and one in 

LSP, in both cases depicted to horticulture. Once the grassland and the irrigated horticulture were 

included in the crop rotation schema, they maintain the static condition across the scenarios. 

In the context of future land scenarios in the Mediterranean, the agriculture is also facing to most 

of the global changes, where desertification risk is a major concern with a significant part of the 

territories with a highly/very highly susceptibility to landscape degradation. For example, Spain 

is accounting to 240,000 km2 risked area (49% of the territory) and Portugal to 24,000 km2 (28%) 

(Prăvălie et al., 2017). Semi-arid conditions and rainfall variability are common climate drivers 

for Spanish and Portuguese farmers, who are forced to convert the traditional rainfed agriculture 

to a more productive agro-system (Castro and Castro, 2019), by improving the water use 

efficiency (Ortega et al., 2005), by introducing high-value crops varieties (Kropff et al., 2001; 

García Morillo et al., 2015)  or by managing multifunctional pastures (Teixeira et al., 2014). 

However, this situation is intensifying the impacts (more production in less land, more water and 

inputs required), the abandonment of marginal land in extensive rainfed areas (García-Ruiz, 

2010), causing a landscape effect in the reallocation of agriculture and a shift from traditional 

rainfed crops to intensive irrigated agriculture (Fornés et al., 2005; Pinilla, 2006). The evolution 

of the current socio-ecological system, on the one hand is trending towards to the greening-up 

and in the other towards land degradation, each with enormous consequences for the environment 

(van Leeuwen et al., 2019). 
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BASELINE LAND SHARING (LSH) 
 

HRU 2004_2005* 2005_2006* 2006_2007* 2007_2008* 2008_2009* 2009_2010* 2010_2011* 2011_2012* 2012_2013* 2013_2014* 

1 AGRC PEAS SUNF WWHT BARL AGRC PEAS SUNF WWHT BARL 

2 BARL SUNF WWHT AGRC AGRC BARL SUNF WWHT AGRC AGRC 

3 HAY BARL BARL SUNF BARL HAY BARL BARL SUNF BARL 

4 SUNF BARL SUNF WWHT BARL SUNF BARL SUNF WWHT BARL 

5 WWHT BARL AGRC PEAS BARL WWHT BARL AGRC PEAS BARL 

6 AGRC PEAS SUNF WWHT BARL AGRC PEAS SUNF WWHT BARL 

7 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

8 SUNF BARL WWHT SUNF BARL SUNF BARL WWHT SUNF BARL 

9 WWHT BARL BARL WWHT SUNF WWHT BARL BARL WWHT SUNF 

10 BARL AGRC SUNF WWHT PEAS BARL AGRC SUNF WWHT PEAS 

11 WWHT BARL BARL SUNF BARL WWHT BARL BARL SUNF BARL 

12 BARL WWHT BARL BARL WWHT BARL WWHT BARL BARL WWHT 

13 WWHT WWHT SUNF WWHT BARL WWHT WWHT SUNF WWHT BARL 

14 BARL BARL AGRC PEAS SUNF BARL BARL AGRC PEAS SUNF 

15 WWHT AGRC PEAS WWHT SUNF WWHT AGRC PEAS WWHT SUNF 

16 BARL HAY BARL AGRC SUNF BARL HAY BARL AGRC SUNF 

 

HRU 2004_2005* 2005_2006* 2006_2007* 2007_2008* 2008_2009* 2009_2010* 2010_2011* 2011_2012* 2012_2013* 2013_2014* 

1 BARL SUNF WWHT AGRC AGRC BARL SUNF WWHT AGRC AGRC 

2 WWHT BARL AGRC PEAS BARL WWHT BARL AGRC PEAS BARL 

3 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

4 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

5 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

6 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

7 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

8 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

9 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

10 AGRC PEAS SUNF WWHT BARL AGRC PEAS SUNF WWHT BARL 

11 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

12 BARL WWHT BARL BARL WWHT BARL WWHT BARL BARL WWHT 

13 WWHT WWHT SUNF WWHT BARL WWHT WWHT SUNF WWHT BARL 

14 BARL BARL AGRC PEAS SUNF BARL BARL AGRC PEAS SUNF 

15 WWHT AGRC PEAS WWHT SUNF WWHT AGRC PEAS WWHT SUNF 

16 BARL HAY BARL AGRC SUNF BARL HAY BARL AGRC SUNF 

LAND BALANCE (LBA) LAND SPARING (LSP) 
 

HRU 2004_2005* 2005_2006* 2006_2007* 2007_2008* 2008_2009* 2009_2010* 2010_2011* 2011_2012* 2012_2013* 2013_2014* 

1 BARL SUNF WWHT AGRC AGRC BARL SUNF WWHT AGRC AGRC 

2 HAY BARL BARL SUNF BARL HAY BARL BARL SUNF BARL 

3 WWHT BARL BARL WWHT SUNF WWHT BARL BARL WWHT SUNF 

4 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

5 WWHT BARL BARL WWHT SUNF WWHT BARL BARL WWHT SUNF 

6 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

7 HORT HORT HORT HORT HORT HORT HORT HORT HORT HORT 

8 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

9 WWHI BARI BARI WWHI BARI WWHI BARI BARI WWHI BARI 

10 SUNF BARL WWHT SUNF BARL SUNF BARL WWHT SUNF BARL 

11 SUNF BARL WWHT SUNF BARL SUNF BARL WWHT SUNF BARL 

12 BARL WWHT BARL BARL WWHT BARL WWHT BARL BARL WWHT 

13 WWHT WWHT SUNF WWHT BARL WWHT WWHT SUNF WWHT BARL 

14 BARL BARL AGRC PEAS SUNF BARL BARL AGRC PEAS SUNF 

15 WWHT AGRC PEAS WWHT SUNF WWHT AGRC PEAS WWHT SUNF 

16 BARL HAY BARL AGRC SUNF BARL HAY BARL AGRC SUNF 

 

HRU 2004_2005* 2005_2006* 2006_2007* 2007_2008* 2008_2009* 2009_2010* 2010_2011* 2011_2012* 2012_2013* 2013_2014* 

1 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

2 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

3 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

4 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

5 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

6 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

7 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

8 BARL SUNF WWHT BARL BARL BARL SUNF WWHT BARL BARL 

9 HORT HORT HORT HORT HORT HORT HORT HORT HORT HORT 

10 SUNF BARL WWHT SUNF BARL SUNF BARL WWHT SUNF BARL 

11 RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE RNGE 

12 BARL WWHT BARL BARL WWHT BARL WWHT BARL BARL WWHT 

13 WWHT WWHT SUNF WWHT BARL WWHT WWHT SUNF WWHT BARL 

14 BARL BARL AGRC PEAS SUNF BARL BARL AGRC PEAS SUNF 

15 WWHT AGRC PEAS WWHT SUNF WWHT AGRC PEAS WWHT SUNF 

16 BARL HAY BARL AGRC SUNF BARL HAY BARL AGRC SUNF 

 

Figure 39. Template for the main crop rotation patterns in Sub-basin 443, ―Arroyo de la Balisa - AdlB‖, for the baseline and the three scenarios.  
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3.4.2 Water balance simulations  

The central fact, related to hydrologic modelling, is the variation of the main water balance 

components respect to the reference model, the baseline scenario, Figure 40. The variation of 

water balance components showed in mm yr-1 represents small values Table 17. However, 

interpreting these variations based on the hydrological year cycle, in the context of 

Mediterranean basins, makes the monthly volumes variations very important for the 

environment provision and regulation as water scarcity is a key factor (Figure 40). The variation 

of the ET across the scenarios is the most relevant change, Figure 41. This is directly related to 

the LULC distribution, crop management and the main hydrologic effects are related to the 

stream flow out and the deep aquifer recharge during the spring-summer period. The ET during 

the period (March-July) presents a higher variability respect to baseline, highlighting a lower 

ET of LSH during April and May (Figure 41).    

Table 17. Variation of water balance components across the scenarios respect to baseline in mm/yr. 

Scenario Precipitation 

[mm/yr] 

Evapotranspiration 

[mm/yr] 

Flow Out 

[mm/yr] 

Soil Water 

Storage [mm/yr] 

DA recharge 

[mm/yr] 

Baseline 435.6 341.2 70.39 20.40 3.61 

LSH 435.6 340.1 71.48 20.35 3.67 

LBA 435.6 342.3 70.03 19.68 3.59 

LSP 435.6 341.3 70.87 19.79 3.64 

 

Figure 40. Water balance components variations of the three land use scenarios (LBA: land balance, 

LSH; land sharing and LSP; land sparing) in comparison to baseline scenario. Calculation based on 10-

years average. 
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Figure 41. Box plots of the main water balance components across the three LULC scenarios:  Land 

sharing (LSH), Land Sparing (LSP) and Land Balance (LBA). Calculation based on 10-years average. 

In the case of LSH, a slightly diminution of ET (-0.3%) is compensated into an augmentation of 

flow out (1.5%) of the sub-basin and depth aquifer recharge (1.7%), annually showed in Figure 

39. However, the ET during June and July in LSH is higher than the other scenarios due to 

grassland coverage but despite this the stream flow out (median and Q3) is a little bit higher as 

similar in lateral flow because stream flow is composed by surface run off, lateral flow and 
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groundwater contribution. This is partly explained due to a diminution of the fallow land area (-

7.7%) and pastures increase of 33% in LSH, 23.7% in LSP and, 7.1% in LBA with respect to 

baseline. This suggests, that  the increase of ET‘s in the scenarios respect to baseline‘s is a key 

fact and, the reduction of ET in LSH turns into beneficial management for surface and 

groundwater bodies‘ protection by increasing its flows. Similar finding related to soil-vegetation 

in Mediterranean ephemeral small basins were described in Italy under climate change scenarios 

(Pumo et al., 2016). 

However, the ET diminution is not only responsible for water bodies‘ augmentation in LSH 

scenario. The soil is a determining factor for watershed regulation in Mediterranean basins and 

constitutes the place in which the water components change the water cycle direction and make 

it sensitive and variable.  A diminution of soil moisture is revealed in this sub-basin as a very 

important source for water regulation (-3.5% in LBA and – 3.0% in LSP) due to soil 

characteristics, Figure 39. Despite, the soils moisture is favored in fallow land, the water 

retention in sandy soils is very low, for this reason the aquifer recharge was increased (+1.7% in 

LSH) and the lateral flow contributes to stream flow increasing in 1.5% the watershed flow out. 

A similar finding of this process was reported for Duero‘s basin (Morán-Tejeda et al., 2011). In 

contrast, the LBA scenario is showed as closer as baseline, highlighting that this scenario made 

the situation worse in terms of deep aquifer recharge especially during the summer flows. The 

ET in LBA was higher than baseline in March and April and very closer to baseline during the 

late spring and summer. This suggests that LBA strategy is worse than baseline for the water 

bodies‘ regulation (surface and groundwater) in late spring and during the summer, the critical 

period of hydric stress. 

In the other hand, a small increase of the ET in LSP result of 3.0% diminution of soil water 

storage while an augmentation of 0.3% of ET in LBA is traduce in -3.5% of soil water storage 

(Figure 40). However, while in LSP the deep aquifer recharge was augmented in 0.8% in LBA 

was -0.6%. As it‘s confirmed the relation between ET and land cover, it‘s important to note the 

importance of LULC in which a reduction of 7.7% of unseeded fallow area and an increase of 

pastures area (+33% in LSH, 23.7% in LSP and +7.1% in LBA) with respect to baseline, affect 

the water bodies flows. Despite the diminution of fallow land in LSH scenario and pastures 

augmentation, it shows hydrological benefits for the watershed in terms of water bodies 

protection. Although water quantity regulation is very important in semi-arid watersheds, the 

water quality and sediments assessment is needed to optimize the scenarios. 

The unseeded fallow, as yearly practice in Mediterranean basins, is very important as part of 

rainfed cropping system because this practice allowing the ET reduction (i.e. plant transpiration) 

favoring the water storage through the soil profile and nutrient mineralization (Lacasta, 1995; 
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Gómez De Barreda Ferraz, 2011). Similar findings were detected in semi-arid conditions in 

central Chaco Paraguay (Cáceres and Ratzlaff, 2013) but highlighting that it also depends on the 

soils and tillage types. Other works also emphasize in the high variability of  the monthly soil 

moisture in comparison to single year water balance in Duero‘s watersheds (Vicente Gonzalez 

et al., 2016). Also, the latter, pointing up the relationship of soil moisture with ET from different 

LU‘s in water regulation, treating the ET separately from rainfed crops and ET from natural 

covers (i.g. pastures and forest). In contrast, the unseeded fallow land in central Spain is 

subjected to an intensive tillage, four tillage operations: 1st plow (after harvest), 2nd plow (fall)‖, 

3rd plow (winter) and rotary hoe for weeds suppression (summer), all of them associated with 

erosion processes (De Alba et al., 1999; Boellstorff and Benito, 2005) and water quality 

problems (Alba et al., 2011; Nadal-Romero et al., 2019), risking the semi-arid ecosystems in 

central Spain. For this reason, we suggest that for further research the fallow yearly practice 

must be lightly reduced but included as a strategy for rainfed crop rotation scheme in 

Mediterranean ephemeral streams. 
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4 Conclusions 

4.1 General and specific conclusions 

This research present join novel improvements to hydrological modelling, tying up input data 

treatment, spatiotemporal vegetation dynamics, and human-induced land use/cover scenarios to 

get accurate values for water balance components in semiarid watersheds. These elements have 

been shown as very sensitive in hydrological modelling with the SWAT model; its treatment 

contributes to addressing water demands issues from an integrated schema for water resources 

management bi-directionally, this is from first-order basins to subbasin scales and from HRUs 

to agroclimatic zones. Thus the detailed knowledge of water interaction between managed and 

natural systems contributes to protecting water bodies sustainably for future decision-making. 

Specifically, this work highlights the sensitivity of soils data, land use/cover temporal dynamics, 

temporal water demand of vegetation, in hydrology modelling. Every simplification in the input 

data of hydrology modelling affects systems interaction representation, for this reason when the 

hydrology model represents these interactions at finer scales, the model can provide results 

allowing improvement in territorial water demand trade-offs. The most relevant contributions 

and outputs of this work are outlined as follows.  

4.1.1 On the value of soil data treatment in hydrology modelling 

The hydrological effect using different soil data sources confirms that spatial resolution is 

essential for subbasin and HRU aggregation definition during SWAT model Set-Up. Although 

the hydrological behavior of the basin is stable, important variations at the level of sub-basins 

and HRUs were identified. Flow out series show that accuracy during peak events are the 

challenge focus during calibration/validation process using the different soil data sets. SWAT 

set-up is an essential stage in which scale and quality data play an important role regarding the 

multi-objective assessment of the hydrologic cycle processes. 

The SOM strategy and high-quality data for model parameterization could be a valuable tool to 

improve hydrological model calibration and validation processes in sub-arid areas, this study 

presents a significant improvement in the overall process of calibration-validation of SWAT 

model.  

One of the most sensitive model parameters, related to soil variables, is soil depth which is 

essential for water fluxes and soil water content. The estimation of soil depth for each HRU 

impacts on water balance components, specially related with aquifer recharge volumes in sub-

arid watershed, as Adaja River in Spain. 
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4.1.2 On the importance of including vegetation dynamics for the understanding of 

coupled processes in hydrological modelling 

The inclusion of vegetation dynamics reinforces the idea that the knowledge of soil properties 

and climate spatial variability is a key component in understanding patterns of vegetation at 

large scales. The conclusions of this study are as follows: 

 Data from Earth observation, in this case, the MODIS satellite, through the soil reflectance 

differences validated the soil units from a digital soil mapping approach with the self-

organizing map (SOM) algorithm. The main differences between the two areas are related to 

the soil physical properties and the precipitation regime. 

 NDVI statistics show a significant difference between the two areas that mainly differ in soil 

physical properties and the precipitation regime. 

 NDVI series under rainfed monoculture activity in the semiarid climate in Spain exhibits a 

persistent structure and a clear multiscaling nature. 

 NDVI residual and anomalies series analysis under rainfed monoculture activity in the 

semiarid climate in Spain exhibits an anti-persistent structure and a weaker multiscaling 

nature. 

4.1.3 An accurate evaluation of water availability in a sub-arid Mediterranean watershed 

CEA, as part of Mediterranean sub-arid catchments with low precipitation rates and accentuated 

water scarcity during summer, is a fragile ecosystem and some measures are needed to mitigate 

water resources overexploitation, as commented by other authors (Ricci et al., 2018). 

This study shows the ability of SWAT to simulate many complex processes as well as the 

importance of including detailed land use information to achieve satisfactory model 

performance. The model can be used to guide water management decisions by stakeholders who 

have water provision targets to meet, especially in the assigning of more realistic agricultural 

water demands. Setup improvements assessed through global statistic indices confirm this. Land 

use and soils are the most important data for the HRUs definition step; any effort to achieve 

more accurate data and maps will reduce the model uncertainty. The model in a daily time step 

has closely simulated the observation streamflow. However, calibration of the SWAT model 

with very low flows is still under study, as intermittent zero flows occurred during simulations 

with low flows and observation values kept measures under 0.1 m3/s.  

Flow regulation and infrastructure, such as reservoirs and artificial aquifer recharge, were made 

to respond to the agricultural demand in the CEA system. These are elements that define a 

stream‘s hydric behaviour in meagre flow watersheds such as the CEA. Any improvement to 

reduce agricultural water demand is a factor that directly increases availability of stream flow. 

Flow stream increment could be achieved by a redefinition of operating rules for reservoir 
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discharge and reduced volumes for artificial aquifer recharge. All measures addressing the 

reduction of net irrigation land, deficit irrigation strategies, and less water-demanding crops, 

among others, are suitable elements to mitigate drought periods with less economic impact. 

The main effort to preserve water resources in the CEA under the current water deficit state 

(very low flows at the outlet) must be directed to soil conservation strategy, due to the 

importance to water transfer to vegetation and to aquifer recharge. A reduction in water 

consumption of crop vegetation could contribute directly to increased water availability in 

stream flows as lateral and return flows. The increase in vegetated covers in fallow areas during 

(fall-winter) period in slopes > 5% could help slow down runoff and allow an increase in 

infiltration time and rates. Thus, the increment of water flux to aquifer recharge could allow the 

lag time of subsurface flow to streams. Further analysis is needed in headwaters through the 

application of land use scenarios in this sense. 

Finally, many applications are foreseen, such as conducting policy and impact studies, using the 

model for climate and LUC studies and analysing the implications of inter-sub-basin transfers, 

among others. 

4.1.4 Land Use change through participatory scenario modelling with SWAT. 

The scenario modelling provides the following conclusions: 

 Participatory scenario is a very useful approach to integrate stakeholder knowledge into the 

development of quantitative and credible LULC, which are a fundamental input for 

modelling and quantifying the hydrological and water resources implications.  

 The land sharing (LSH) scenario represents among the three scenarios the most likely LU 

strategy to favor stream flow configuration and deep aquifer recharge in this semiarid sub 

basin.  

 LSH scenario could be used as a driver for land management of midlands on Duero‘s river 

basin to achieve environmental goals related to water volume availability.  

 The fallow should be included as an important yearly practice in rainfed crop rotation 

schemas in Mediterranean basins. Since this choice suppose an important strategy for water 

balance regulation in this sub-basin. However, despite fallow suppression also fulfills 

strategic measure for water quality regulation, a balance about the amount of yearly fallow 

land is needed. The assessment, through modelling, of this effect should be coupled for water 

quantity and quality to analyze the overall effect. 

 In Mediterranean and agricultural basins, the crop rotations schemas are very sensitive to 

water resources variability. The schemas and their location in basins must be rethinking and 

modeled to achieve the environmental goals. 
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4.2 Limitations and further research 

4.2.1 Limitations 

Hydrological modelling is a representation of very complex processes of the soil-plant-

atmosphere system. However, the model itself is a simplification of these processes and to 

capture all involved processes is an impossible task. For this reason, modellers deal with 

reducing the different uncertainties sources as much as possible and thus, defining model 

limitations. Most of the uncertainties of the processes are related to the date in which the 

processes take place and its temporal availability, data quality, and its spatial and temporal 

scale. The SWAT model also aggregates processes at HRU level which limit the capacity to 

understand the process at a finer level than HRUs. Even though, the HRU definition was 

improved during the parameterization process, to reach a balance between finer resolutions of 

input data representation, simulation computational time, and calibration-validation resources 

using a personal computer. The complete run of SWAT model, that comprises all the HRUs, 

need supercomputer resources to get calculations for all possible HRUs. This means, a precision 

of daily time step for areas up to one hectare. 

Self-organizing maps (SOM) as a method used in this work to improve the edaphological input 

for the SWAT model is based on the spatial availably of soil pits or soil survey data. For this 

reason, an increase of soil survey points can increase the performance of spatial clustering. 

However, the use of DB index allow to avoid get randomly results when defining the desirable 

number of clusters, but the inclusion of new soil data points can improve the bounds of soil 

units from the SOM. The SOM join to DB index provide a region of high performance for 

digital soil mapping of soil properties for hydrological modelling but clustering final selection 

also need comparison to taxonomic soil maps to corroborate that clustering from SOM follow 

the same bounds pattern. 

Quality of precipitation data is one of the most sensitive parameters for hydrological modelling 

since this is in most of the cases the only water input into the model. The only exceptions are 

the sub-basins downstream of the reservoirs, in which the release counts as additional surface 

water input into the system or from basins water transfers. Using TPM for precipitation 

assignation per watershed also is a source of uncertainty. This approach does not consider finer 

gradients between rain gauges and assumes a uniform distribution of precipitation in the 

subbasin. The TPM provides weighted values between rain gauges overlapped with sub-basins 

limits. However, the use of TPM provides more accurate results in surface flow configuration in 

combination with the SWAT model because of the use of HRUs approach to split the sub-

basins. Some bias in streamflow estimations could be attributed to several precipitation extreme 

events as hail or spring-summer storms in ungauged areas, but in the Mediterranean, these 
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events represent small volumes at the basin scale. This could be part of the system water input 

and usually attributable to the peak matching in extreme events. Despite this situation, the 

SWAT model captured the streamflow at daily time step for a long-term period with accurate 

series behaviour. 

Land use land cover information, is also one of the most difficult but relevant information to get 

a reliable hydrological model. Every managed system is susceptible to change from one day to 

other. This especially true for agricultural areas, in which crop campaigns change larger areas in 

a matter of days. This is attributable to sowing dates, tillage operations, growing season, 

irrigation timing, and harvesting dates. Most of these dates from every parcel are almost 

unknown. With the aid of EO and farmers surveys, an approximate of this timing can be 

estimated. However, these dates are essential for flow routing in the SWAT model. For  model 

simplification, the dates for each agrarian activity and for each crop was settled at the same time 

in the whole basin. This is not true in reality and this situation affect flows specially with time 

response of the precipitation-run off configuration process and from phonological point of view 

the vegetation is exposed to weather hazards in different states. Therefore, the aim of this model 

was not related to cropping phenology and was performed with hydrological purposes 

considering cropping details in a uniform way.  

The inclusion of cropping sequences, approximate dates for each operation is actually a 

significant improvement for hydrological modelling at basin scales for long-term period as 

present in this work. Most of the models used to evaluate water demands at basin scales do not 

uses crop sequences, and do not consider crop operations neither fixing dates for operations. 

Actually, the models used to evaluate water resources allocation are based on mass transfer 

optimization routines, fixing most of the principal processes as evapotranspiration, uniform soil 

hydraulic properties, unique land use maps or vegetation cover over simulation period. All of 

these do not represent accurately the complexity of the soil-plant-atmosphere system interaction 

of a watershed. However, models as SWAT are present as a technical complement for these 

management models. The limitation for SWAT model implementation for its massive usage for 

basin water resources management and planning is data availability, limited computational 

resources and technicians training. 

There are also some limitations regarding EO data. The pixel size of the product, revisit period, 

and atmospheric noise are part of the main concerns of uncertainty for vegetation dynamic 

analysis. Despite this, the analysis of long-term series evidences the strong relation between 

weather conditions and vegetation. This is especially true for rainfed crops and for natural 

vegetation in Mediterranean area. This relation is important since rained agriculture and 
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hydrology dynamics in Mediterranean zone is very sensitive to weather dynamics face to 

climate change scenarios.  

4.2.2 Further research 

 The improvement of operation scheduling. This can be possible integrating the tool 

SWATFarmR to scheduling of management operations based on climate data and 

operation schedules for the specific land uses in a SWAT model. 

 Calibrate and validate a SWAT model of the CEA system with all possible HRUs using 

super computer resources. 

 Adopted criteria guideline to facilitate multi‐variable and multi‐site calibration and 

validation of the SWAT model in Mediterranean zone. 

 Improve the analysis to calibrate and validate ephemeral streams in Mediterranean zone.  

 Use the EO data to train a SOM soil map for hydrological purposed coupled to 

taxonomic soil unit approach, including diverse soil depth models. 

 Create soil properties scenarios for hydrological modelling of agrarian watersheds in the 

Mediterranean zone. 

 Include annual fallow as a valuable practice in crop rainfed sequences to optimize 

stream flows trade-off in river basin management and planning. 

 Include water quality calibration and validation in a SWAT model of the CEA system. 

 Integrate data from CAP Spanish system can provide valuable data to monitor crop 

growth and evaluate crop yields also with the SWAT model. An economic valuation of 

agrarian productivity could be performed. 

 The CEA system offer a diversity of managed systems that represent traditional, 

moderate and advanced managed systems of Iberian Peninsula and serve as an example 

for multiple agrarian and environmental studies. 
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6 Annexes 

Annex 1. Harmonized world soil database HWSD  for SWAT modelling of Adaja Watershed in Spain. 

MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 SOL_Z2 SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 CLAY2 SILT2 SAND2 ROCK2 SOL_ALB2 

7003 FAO 2 C 1000 300 1.1 0.05 17.20 2.72 23 36 41 8 0.01 700 1.16 0.02 18.96 1.07 24 32 44 6 0.01 

9673 FAO 2 C 1000 300 1.39 0.25 4.00 0.6 18 48 34 15 0.01 700 1.41 0.11 5.36 0.4 18 46 36 10 0.01 

9677 FAO 1 C 300 300 1.45 0.00 30.25 1.4 9 18 73 21 0.01 0 0 0.00 0.00 0 0 0 0 0 0.01 

9678 FAO 2 B 1000 300 1.54 0.33 50.00 0.3 5 6 89 1 0.01 700 1.55 0.14 50.00 0.3 5 6 89 1 0.01 

9696 FAO 2 B 1000 300 1.5 0.33 41.51 0.7 9 13 78 19 0.01 700 1.5 0.14 40.66 0.31 10 13 77 14 0.01 

9697 FAO 2 C 1000 300 1.1 0.05 17.20 2.72 23 36 41 8 0.01 700 1.16 0.02 18.96 1.07 24 32 44 6 0.01 

9699 FAO 2 C 1000 300 1.41 0.17 10.17 0.65 21 43 36 6 0.01 700 1.45 0.07 9.24 0.43 23 43 34 10 0.01 

9703 FAO 2 D 1000 300 1.28 0.50 1.35 0.87 49 32 19 5 0.01 700 1.35 0.21 3.61 0.39 42 35 23 5 0.01 

9705 FAO 2 C 1000 300 1.41 0.17 10.17 0.65 21 43 36 6 0.01 700 1.45 0.07 9.24 0.43 23 43 34 10 0.01 

9706 FAO 2 D 1000 300 1.28 0.17 1.35 0.87 49 32 19 5 0.01 700 1.35 0.07 3.61 0.39 42 35 23 5 0.01 

9715 FAO 2 C 1000 300 1.53 0.17 16.87 0.83 24 28 48 12 0.01 700 1.51 0.07 12.98 0.4 34 25 41 8 0.01 

9719 FAO 2 C 1000 300 1.44 0.50 25.66 0.4 15 13 72 4 0.01 700 1.55 0.21 25.65 0.27 28 14 58 5 0.01 

9725 FAO 2 C 1000 300 1.36 0.25 25.65 0.86 21 40 39 4 0.01 700 1.39 0.11 25.65 0.38 21 38 41 7 0.01 

9736 FAO 2 C 1000 300 1.53 0.5 16.87 0.83 24 28 48 12 0.01 700 1.33 0.5 12.98 0.4 34 25 41 8 0.01 

9744 FAO 2 C 1000 300 1.33 0.50 14.58 1.39 21 37 42 19 0.01 700 1.48 0.21 17.75 0.6 20 34 46 26 0.01 
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Annex 2. Soil properties of Adaja watershed using the Kriging interpolation 

method from soil samples.  

AWC: available water content in [%], WP: wilting point in [%], CBN: Organic carbon content 

in [%] and Ksat: Hydraulic conductivity in [mm/day]. 
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Annex 3. Soil depth restrictions for soil depth mapping of Adaja watershed. 

Watershed Segment 

Minimun soil 

depth of pits 

[mm] 

Maximun soil 

depth of pits 

[mm] 

Effective minimum 

soil depth for root 

development [mm] 

Effective maximun soil 

depth for root 

development [mm] 

Low 850 1500 

800 (cropland) 1200 (cropland) 

120 (forest) 2000 (forest) 

0.0 (bare soil) 50 (bare soil) 

Medium 850 1200 

800 (cropland) 1200 (cropland) 

100 (forest) 2000 (forest) 

0.0 (bare soil) 50 (bare soil) 

High 100 800 

100 (cropland) 350 (cropland) 

85 (forest) 60 (forest) 

0.0 (bare soil) 50 (bare soil) 
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Annex 4. Soil depth model developed for Adaja watershed. 
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Annex 5. Google Earth Engine script to extract MOD13Q1 reflectance bands and 

Vegetation indices for SOM 5 and SOM15. 

Script for SOM5 plots 

var MOD13Q1 = ee.ImageCollection('MODIS/006/MOD13Q1'). 

              filterDate('2000-02-18', '2019-10-01'). 

              select('NDVI','EVI','sur_refl_b01', 'sur_refl_b02','sur_refl_b03','sur_refl_b07'); 

// Define a region of interest as a point. 

var SOM15_5 = ee.Feature( 

              ee.Geometry.Point(-4.942608705, 40.86418543), {'label': ' som15_5'});  

var SOM15_9 = ee.Feature( 

              ee.Geometry.Point(-4.949504594, 40.82555542), {'label': ' som15_9'}); 

var SOM15_12 = ee.Feature( 

              ee.Geometry.Point(-4.938772086, 40.83156543), {'label': ' som15_12'}); 

var SOM15_19 = ee.Feature( 

              ee.Geometry.Point(-4.966845778, 40.8048759), {'label': ' som15_19'});               

var SOM15_41 = ee.Feature( 

              ee.Geometry.Point(-4.944333386, 40.85712406), {'label': ' som15_41'}); 

// Add to map point of interest             

Map.addLayer(SOM15_5);   

Map.addLayer(SOM15_9);   

Map.addLayer(SOM15_12);   

Map.addLayer(SOM15_19);   

Map.addLayer(SOM15_41);  

// Create and print the chart. 

print(ui.Chart.image.series(MOD13Q1, SOM15_5),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_9),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_12),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_19),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_41),10000); 

Script for SOM15 plots 

// Load MOD13Q1 product input imagery. 

var MOD13Q1 = ee.ImageCollection('MODIS/006/MOD13Q1'). 

              filterDate('2000-02-18', '2019-10-01'). 

              select('NDVI','EVI','sur_refl_b01', 'sur_refl_b02','sur_refl_b03','sur_refl_b07'); 

// Define a region of interest as a point. 

var SOM15_13 = ee.Feature( 

              ee.Geometry.Point(-4.224098023, 41.06509693), {'label': ' som15_13'});               

var SOM15_15 = ee.Feature( 

              ee.Geometry.Point(-4.224782776, 41.0750117),  {'label': ' som15_15'}); 

var SOM15_16 = ee.Feature( 

              ee.Geometry.Point(-4.226666651, 41.08117623), {'label': ' som15_16'}); 

var SOM15_17 = ee.Feature( 

              ee.Geometry.Point(-4.233210781, 41.07385135), {'label': ' som15_17'});               

var SOM15_23 = ee.Feature( 

              ee.Geometry.Point(-4.244248046, 41.06830756), {'label': ' som15_23'});               

// Add to map point of interest             

Map.addLayer(SOM15_13);   

Map.addLayer(SOM15_15);  

Map.addLayer(SOM15_16); 

Map.addLayer(SOM15_17);    

Map.addLayer(SOM15_23);   
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// Create and print the chart. 

print(ui.Chart.image.series(MOD13Q1, SOM15_13),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_15),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_16),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_17),10000); 

print(ui.Chart.image.series(MOD13Q1, SOM15_23)
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Annex 6. Detailed crop management operations of Cega-Eresma-Adaja (CEA) 

case study. 

Land use crop 
SWAT Landuse 

code 
 Planting Date Tillage operation name Tillage date 

Auto-
Fertilization 
initial date 

Fertilizer 
composition 

Fertilizer total 
amount 

Harvest 
operation date 

Winter Wheat WWHT 08-dec 

Fallplow 03-dec 

12-oct 27-00-00 350 kg 28-jul Field Cultivator Lt15ft 05-dec 

Roller Packer Flat Roller 07-dec 

Barley BARL 25-feb Fallplow 23-feb 24-feb 27-00-00 350 kg 21-jul 

Maize CORN 01-apr 

Subsoil Chisel Plow 10-apr 

06-may 08-15-15 1000 kg 15-sep 
Rotary Hoe 25-apr 

Field Cultivator Lt15ft 25-may 

Roller Packer Flat Roller 30-may 

Potato POTA 16-apr 

Generic Spring Plowing 
Operation 

05-apr 

04-apr 08-15-15 1000 kg 22-aug Field Cultivator Lt15ft 09-apr 

Bedder disk-row 12-apr 

Beet cultivator 8 row 14-apr 

Sugar beet SGBT 01-mar 

Generic Spring Plowing 
Operation 

20-feb 

01-mar 27-00-00 1200 kg 15-may 
Field Cultivator Lt15ft 27-feb 

Disk Plow Lt23ft 28-feb 

Sunflower SUNF 25-apr 
Springtooth Harrow 

Ge15ft 
23-mar 22-mar 08-15-15 600 kg 02-sep 

Alfalfa ALFA 01-oct Fallplow 04-oct 02-oct 00-20-20 200 kg 

05-may 

05-jun 

01-jul 

05-aug 

01-sep 

30-sep 

Horticulture HORT 03-mar Fallplow 02-mar 01-mar Elem-N 500 kg 01-aug 

Aromatic herbs AROM 15-feb Fallplow 02-mar 04-mar Elem-N 500 kg 01-aug 

Peas PEAS 15-nov Fallplow 14-feb 13-feb Elem-N 300 kg 01-jul 

Canola CANA 06-oct Fallplow 16-oct 17-oct 08-15-15 250 kg 20-jul 

Olives OLIV already planted Sprgplow 02-mar 01-mar Elem-N 250 kg 15-oct 

Vineyard GRAP already planted Sprgplow 15-mar 13-apr Elem-N 250 kg 15-aug 
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Annex 7.  Participatory scenario process 

The use of this participatory scenario approach is intended to create the bridge, between global 

LU narratives and the local context in which LU decisions take place. Such approach also 

allows translating and simulating through modelling tools, a more accurate water balance 

components quantification. The main purpose of these participatory scenarios is to translating 

narrative scenarios into quantitative assessment of the LU scenario, as well as to assess the 

stakeholder perception for plausible future use of land at the local context showing the 

contrasting results to current LU patterns. 

 Workshop and stakeholder composition group 

The workshop was held on November 28th 2016, in the town of Coca (Segovia), located in the 

study area and selected for its proximity to the location where most participants resided or 

worked. It was designed and developed by two external facilitators (the first two authors of this 

report) in close collaboration with the UPM team. Additionally, two external rapporteurs were 

hired to provide support in taking notes during the event. Participants were selected by the 

TALE technical team in close collaboration with the two external facilitators, using as main 

selection criteria their in-depth knowledge of the study area and the search for a well-balanced 

diversity of interests and expertise. Invitations were sent by email and follow-up phone calls 

conducted as needed. The workshop was attended by 24 people including: 3 participants from 

the Duero River Basin Authority (RBA), 2 from the Castilla y León regional agricultural 

authority, 4 irrigators or members of irrigator farmer associations, 2 rainfed farmers members of 

farming associations, 2 from the Castilla y León regional environmental authority, 3 

environmental agents, 3 members of regional or national environmental groups, 2 

representatives of municipalities located in the CEA region, and 3 members of Academia. The 

event was hosted in a facility made available by the Municipality of Coca and received the 

explicit support of the Duero RBA (the study is located within the Duero River Basin). The 

organizing team included three facilitators and three rapporteurs. 
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 Narratives and outcomes 

A summarized description for the three scenarios is described as follows.  

 Scenario LSH (Land Sharing) 

The scenario drivers related with LULC for LSH were highlighted by the adoption of 

pastures and shrubs over the abandoned agricultural parcels due of non-productive 

characteristics and the transitory suppression of fallow in the crop rotation annual 

scheme keeping as a permanent condition. Also, reductions of fertilization amounts 

were globally reduced in a 30% for N and 10% for P.  The LULC were conducted 

specifically using protocol rules for middle part of CEA system. 

 Scenario LSP (Land Sparing) 

The LSP scenario was highlighted by the privileging of a specialized agriculture, a more 

intensive agriculture. Those areas follow strategies oriented to increase water efficiency 

producing more with fewer resources. A lightly augmentation of irrigation areas was 

defined at the expense of higher abandon non-productive parcels. An agricultural land 

concentration of irrigated parcels and rainfed crops around municipal headers were 

defined, trying to optimize the efforts of high-tech practices and infrastructures in time 

and costs. The LULC were conducted specifically using the defined protocol rules for 

middle part of CEA system. 

 Scenario LBA (Land Balance) 

The LBA scenario was considered as a consensus between the maintaining of 

agricultural rainfed practices in most of the area but a remarkable need to attend 

external demand of horticulture, the augmentation of irrigation efficiency as a good 

practice and the suppression of fallow from rotation scheme of non/productive parcels 

and let them fall in natural recover of vegetated surface (mosaic of spontaneous pastures 

and shrubs). 
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During the workshop, the LU factors associated to trade-offs between the agricultural 

landscapes, food production and biodiversity in a 10 year‘s horizon were jointly discussed, 

fulfilling the WFD (Water Framework Directive) targets following each of the storylines. The 

three local scenarios were drafted by stakeholders making use of basin maps as template to 

allocate the major LU change of the basin and the associated land management practices to each 

LU change, Figure A1. 

  

  

LU maps from drafting from baseline scenario to each narrative. 

The scenario comparison is possible considering the following elements : i) a stakeholder 

workshop formed by experts in resources management, agriculture, administration and regional 

planning, ii)  a standardized protocol  (Patel et al., 2007) developed and adapted to local 

circumstance for TALE consortium (Hagemann et al., 2019; Karner et al., 2019) as guideline for 

scenario building, iii) using common model biophysical elements as weather regime, time 

simulation and soils and, iv) the stakeholder validation feedback. However, complete missing 

information, qualitative to quantitative, requires that technical modeler‘s uses complimentary 
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information as planning documents to infer plausible targets and allocate them spatially. The 

LULC scenarios and its spatial arrangements were conducted for the CEA system thought a 

mapping activity. The workshop final results were the creation of LULC reference maps for 

each storyline which in turn the latter were used in this work for setting up each scenario for 

modelling.  

In sub-basin 443, through the three scenarios were considered that there was no significant 

augmentation of urban-transportation and forest areas. For this reason, urban-transportation and 

forest LU‘s were considered as static area whereas the agricultural and semi-natural (pastures 

and shrubs) were considered as more dynamical land. The focus of this reasoning was foreseen 

inferring the environmental effect of LULC and land management at sub-basin scale. 

With the aim to compare scenarios with a realistic approach, a baseline scenario was defined, in 

which the calibration and validation were assessed. The effort of compare physically the 

scenario modelling performance, were developed upgrading the parameters from calibration 

sensitivity ranking to make it transferable before assessing results for LSH, LBA and LSP 

scenarios.  

Once the LU reference maps have been defined (Baseline, LSH. LBA and LSP), the maps were 

validated through a survey to the same group of stakeholders. The modelling structure needs to 

be spatially coincident for comparisons and analysis. Thus, a spatial unit was established to 

allow the spatial direct comparison. The spatial unit selected was the Hydrologic Response Unit 

(HRU) of SWAT model. The model set-up is detailed in section 2.3. 
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Annex 8. Soil database for SWAT model using the Kriging strategy for soil properties assignation to taxonomic units of ITACyL soil map (TSU) al 

1:400,000 scale. 

MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50000 ITACYL 1 B 1300 300 1.38013 0.107845 7.89307 1 27.1017 19.5217 53.3766 0 0.024503 0.142798 

50001 ITACYL 1 A 1256 300 1.8563 0.077623 65.2473 1 9.02159 18.0901 72.9673 0 0.024503 0.142798 

50002 ITACYL 1 A 1350 300 1.39177 0.084943 18.4875 1.012488 19.5751 14.3669 66.058 0 0.032286 0.149578 

50003 ITACYL 1 A 1300 300 1.73977 0.08313 56.1983 1.645349 9.12188 19.95892 70.9192 0 0.009429 0.164496 

50004 ITACYL 1 A 300 300 1.79244 0.079341 106.011 1.018157 3.9175 22.1475 73.935 0 0.031932 0.170777 

50005 ITACYL 1 A 1227 300 1.61227 0.104359 18.414 1.192797 20.3898 22.2722 57.338 0 0.022736 0.161809 

50006 ITACYL 1 A 1300 300 1.21697 0.101756 13.2898 0.496904 22.1962 20.4581 57.3457 0 0.088 0.159561 

50007 ITACYL 1 A 300 300 1.65743 0.093959 36.428 0.821163 12.3354 20.9166 66.748 0 0.046839 0.168494 

50008 ITACYL 1 A 300 300 1.98966 0.092247 54.1825 0.609506 9.43645 24.79245 65.7711 0 0.070693 0.177081 

50009 ITACYL 1 A 300 300 1.72884 0.102354 28.2749 0.500233 14.8961 25.1791 59.9248 0 0.087432 0.172518 

50010 ITACYL 1 A 300 300 0.940075 0.127755 9.34198 1.143238 25.7975 31.385 42.8175 0 0.025037 0.164908 

50011 ITACYL 1 B 300 300 0.992624 0.133468 4.51901 2.616279 19.8615 17.8806 62.2579 0 0.001427 0.155781 

50012 ITACYL 1 B 300 300 1.13122 0.124694 6.54603 0.86661 28.6659 28.4833 42.8508 0 0.042877 0.161471 

50013 ITACYL 1 A 1050 300 1.21317 0.099661 18.281 0.480899 18.9804 22.2056 58.814 0 0.090782 0.165033 

50014 ITACYL 1 A 1033 300 1.32442 0.101033 15.2684 0.729081 21.8287 20.3345 57.8368 0 0.056025 0.159417 

50015 ITACYL 1 B 300 300 1.12441 0.105043 7.44492 1.36282 27.1592 17.4889 55.3519 0 0.016335 0.148063 

50016 ITACYL 1 B 300 300 1.11526 0.139108 4.27834 1.119849 31.963 36.9462 31.0908 2.2989 0.026202 0.16394 

50017 ITACYL 1 A 300 300 1.93787 0.104926 89.9006 0.968953 2.5099 34.0527 63.4374 0 0.035138 0.191547 

50018 ITACYL 1 A 300 300 1.79255 0.074783 126.098 1.141302 2.84839 19.56451 77.5871 0 0.025131 0.157286 

50019 ITACYL 1 A 300 300 1.73783 0.068654 150.605 1.426326 0.811042 16.96986 82.2191 0 0.014437 0.135877 

50020 ITACYL 1 A 300 300 1.74475 0.09454 103.065 0.884814 2.27411 29.38369 68.3422 0 0.041385 0.187341 

50021 ITACYL 1 A 300 300 1.76499 0.091693 114.582 0.626773 1.61303 27.48067 70.9063 0 0.068359 0.184638 

50022 ITACYL 1 A 1500 300 1.3955 0.082486 20.5583 0.720907 18.7052 13.8835 67.4113 0 0.056923 0.149551 

50023 ITACYL 1 A 300 300 1.14053 0.08307 29.7884 0.768576 15.899 16.1948 67.9062 0 0.051883 0.15675 

50024 ITACYL 1 A 1269 300 1.19302 0.106567 10.1425 0.883878 26.4886 19.7268 53.7846 0 0.041461 0.153721 

50025 ITACYL 1 A 300 300 1.30067 0.087666 23.2158 1.459099 18.7406 14.6744 66.585 0 0.013546 0.149302 

50026 ITACYL 1 A 1350 300 1.62845 0.078566 42.1971 1.180337 16.3743 12.319 71.3067 0 0.023294 0.144006 
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MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50027 ITACYL 1 B 300 300 1.2802 0.11354 4.50946 2.057291 31.564 19.7333 48.7027 0 0.004232 0.146396 

50028 ITACYL 1 A 814 300 1.36143 0.073787 42.6118 0.904919 12.4822 15.0989 72.4189 0 0.039799 0.153165 

50029 ITACYL 1 A 1227 300 2.03046 0.084377 60.5134 0.755262 8.87672 21.75188 69.3714 0 0.053244 0.171887 

50030 ITACYL 1 A 300 300 1.19464 0.086785 18.3691 0.624651 19.6875 16.5925 63.72 1.8349 0.068641 0.152406 

50031 ITACYL 1 A 300 300 1.24701 0.086065 20.0917 0.831634 18.6464 15.0197 66.3339 0 0.045895 0.152292 

50032 ITACYL 1 A 1500 300 1.20001 0.096986 9.50311 0.746895 27.499 14.3611 58.1399 0 0.054117 0.143856 

50033 ITACYL 1 A 300 300 1.12702 0.080036 23.7191 1.205994 17.5964 14.0997 68.3039 1.6393 0.02216 0.146032 

50034 ITACYL 1 A 1200 300 1.6174 0.076881 104.902 3.410244 4.38309 17.57131 78.0456 0 0.000305 0.148826 

50035 ITACYL 1 A 1250 300 1.738639 0.08164 89.3936 1.617616 5.66669 19.68941 74.6439 0 0.009952 0.161385 

50036 ITACYL 1 A 1248 300 1.62004 0.07713 96.529 2.304936 6.07521 17.37309 76.5517 0 0.002615 0.151901 

50037 ITACYL 1 A 1317 300 1.6557 0.069725 124.652 2.300465 3.43321 16.59269 79.9741 0 0.002637 0.141415 

50038 ITACYL 1 A 1288 300 1.7238 0.064042 151.352 0.928971 1.12911 15.77479 83.0961 0 0.03798 0.131483 

50039 ITACYL 1 A 1150 300 1.69813 0.087271 93.2526 1.180366 4.29966 23.96034 71.74 0 0.023293 0.175159 

50040 ITACYL 1 A 300 300 1.21758 0.101475 21.4308 3.249901 20.375 17.7584 61.8666 0 0.000416 0.153332 

50041 ITACYL 1 A 300 300 1.02896 0.104963 10.0231 5.041465 25.6379 18.1902 56.1719 0 1.28E-05 0.149197 

50042 ITACYL 1 A 300 300 1.01423 0.096496 14.3393 4.476709 22.4363 17.0087 60.555 0 3.83E-05 0.150197 

50043 ITACYL 1 A 1350 300 1.50556 0.103629 28.174 2.613581 17.8614 20.3012 61.8374 0 0.001435 0.159612 

50044 ITACYL 1 A 1300 300 1.19529 0.082845 13.5549 2.692081 23.3875 7.7658 68.8467 0 0.001231 0.123277 

50045 ITACYL 1 A 300 300 1.8914 0.076921 116.819 1.677076 2.47956 19.05804 78.4624 0 0.008865 0.152237 

50046 ITACYL 1 A 300 300 1.82 0.102399 51.0442 1.52907 7.98324 29.42166 62.5951 0 0.011822 0.180221 

50047 ITACYL 1 A 1500 300 1.89677 0.100373 100.216 1.04964 2.26239 31.35541 66.3822 0 0.030035 0.189169 

50048 ITACYL 1 A 1277 300 1.62334 0.107816 11.8453 2.644343 23.7961 22.6001 53.6038 0 0.001351 0.156783 

50049 ITACYL 1 A 300 300 1.74522 0.098139 114.795 1.835878 1.80809 28.98721 69.2047 0 0.00651 0.183818 

50050 ITACYL 1 A 300 300 1.75785 0.085847 44.9176 0.842355 12.2466 19.0519 68.7015 0 0.044948 0.164701 

50051 ITACYL 1 A 300 300 1.83709 0.100634 25.6063 1.730895 17.4961 21.9423 60.5616 0 0.007984 0.162667 

50052 ITACYL 1 A 300 300 1.88078 0.11177 31.9993 1.187919 14.5644 29.3804 56.0552 0 0.022953 0.174472 

50053 ITACYL 1 A 300 300 1.84628 0.103929 54.9785 1.205326 9.62706 29.24134 61.1316 0 0.022189 0.179674 

50054 ITACYL 1 A 300 300 1.92348 0.090656 78.4672 0.883157 5.61853 26.55587 67.8256 0 0.041519 0.181536 

50055 ITACYL 1 A 300 300 1.27686 0.090952 43.3184 1.313256 12.0575 21.0717 66.8708 0 0.017988 0.16711 

50056 ITACYL 1 A 300 300 1.81107 0.093672 39.6834 0.773488 12.0575 23.0008 64.9417 0 0.05139 0.171885 

50057 ITACYL 1 A 300 300 1.43298 0.10072 28.0492 1.007442 15.5673 22.7934 61.6393 0 0.032604 0.167971 
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MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50058 ITACYL 1 A 300 300 0.970133 0.081114 37.5747 2.810983 14.6479 13.6787 71.6734 0 0.000977 0.146093 

50059 ITACYL 1 A 300 300 0.999547 0.093254 17.2511 0.967006 21.4192 14.66 63.9208 0 0.035272 0.149134 

50060 ITACYL 1 A 300 300 0.927 0.123544 21.137 3.197674 20.0755 33.4626 46.4619 2.2222 0.000461 0.167923 

50061 ITACYL 1 A 300 300 1.0799 0.09494 19.6638 1.088221 20.4066 16.7994 62.794 0 0.027864 0.153996 

50062 ITACYL 1 A 300 300 1.79647 0.065141 143.914 0.485412 3.79731 13.80849 82.3942 0 0.089989 0.130103 

50063 ITACYL 1 A 1484 300 1.46498 0.099624 10.7844 1.941209 24.5107 18.1246 57.3647 0 0.005304 0.150392 

50064 ITACYL 1 A 1408 300 1.1654 0.099145 9.28116 0.759762 26.3758 16.1032 57.521 0 0.05278 0.148291 

50065 ITACYL 1 A 1445 300 1.31134 0.087532 18.2864 0.694 21.8217 14.0866 64.0917 0 0.059981 0.148149 

50066 ITACYL 1 A 1282 300 2.00283 0.094114 124.38 1.144814 0.625724 29.71038 69.6639 0 0.02496 0.187269 

50067 ITACYL 1 A 300 300 1.55139 0.082378 35.1884 0.87657 15.5605 15.2726 69.1669 0 0.042054 0.154161 

50068 ITACYL 1 A 300 300 1.95773 0.083283 104.615 0.7645 3.94572 22.80548 73.2488 0 0.052296 0.173279 

50069 ITACYL 1 A 300 300 1.86156 0.107896 27.4105 0.944924 14.7865 27.5204 57.6931 0 0.036819 0.173792 

50070 ITACYL 1 A 300 300 1.86156 0.101749 24.7715 0.789558 17.1728 23.6703 59.1569 0 0.049808 0.168069 

50071 ITACYL 1 A 300 300 1.842 0.11731 39.3182 2.325581 10.2664 34.1091 55.6245 0 0.002512 0.179665 

50072 ITACYL 1 A 300 300 1.88834 0.113525 24.1099 1.082203 16.0862 29.383 54.5308 0 0.028192 0.1733 

50073 ITACYL 1 A 300 300 1.6713 0.080042 105.622 0.980994 4.82659 21.52541 73.648 0 0.034325 0.169244 

50074 ITACYL 1 C 300 300 1.33977 0.127919 4.28656 1.264517 33.7709 27.4761 38.753 0 0.019776 0.155153 

50075 ITACYL 1 C 1500 300 1.45308 0.097766 3.71178 0.25893 32.6767 8.3502 58.9731 0 0.139791 0.123289 

50076 ITACYL 1 B 1267 300 1.35859 0.095018 5.90858 0.331206 29.2543 10.4151 60.3306 0 0.12146 0.132802 

50077 ITACYL 1 A 300 300 1.7319 0.100204 87.4995 0.712145 2.90633 31.67627 65.4174 0 0.057901 0.190158 

50078 ITACYL 1 A 300 300 1.59448 0.075076 120.308 0.720587 3.69418 20.70462 75.6012 0 0.056958 0.165531 

50079 ITACYL 1 A 300 300 1.72081 0.109394 26.7733 0.826942 16.3162 26.6428 57.041 0 0.046316 0.171792 

50080 ITACYL 1 A 300 300 1.23183 0.087429 19.8973 1.030558 20.2297 14.1822 65.5881 0 0.031171 0.148639 

50081 ITACYL 1 A 300 300 1.97101 0.090659 15.7076 1.144 21.2319 14.4382 64.3299 0 0.025 0.148154 

50082 ITACYL 1 A 300 300 1.24601 0.086199 20.9317 1.245994 20.1131 12.5581 67.3288 0 0.020502 0.143528 

50083 ITACYL 1 A 300 300 1.14992 0.103486 17.0674 0.74036 20.6135 19.5531 59.8334 0 0.054809 0.159467 

50084 ITACYL 1 A 300 300 1.25162 0.107737 21.0378 1.06411 18.9736 24.8667 56.1597 0 0.029202 0.166277 

50085 ITACYL 1 B 300 300 1.09051 0.142786 7.138 1.095285 27.3845 38.9424 33.6731 0 0.027484 0.170023 

50086 ITACYL 1 B 1335 300 1.37209 0.096443 5.21965 0.808209 30.3137 9.2842 60.4021 0 0.048034 0.127848 

50087 ITACYL 1 A 1500 300 1.54529 0.079734 16.6822 0.52581 20.8712 10.6629 68.4659 0 0.083189 0.138812 

50088 ITACYL 1 A 1140 300 1.573 0.080882 17.6511 0.154115 19.908 12.7363 67.3557 0 0.171399 0.146162 
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MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50089 ITACYL 1 A 300 300 1.01357 0.111247 15.5124 1.194186 20.9973 24.9801 54.0226 0 0.022675 0.164098 

50090 ITACYL 1 B 300 300 1.0832 0.131716 4.80997 1.398983 31.6066 32.1391 36.2543 1.3157 0.015226 0.159409 

50091 ITACYL 1 A 300 300 1.12976 0.118233 10.5767 1.024802 24.842 27.5622 47.5958 0 0.031522 0.162825 

50092 ITACYL 1 B 300 300 0.984469 0.14149 6.19673 1.338581 26.7118 41.7283 31.5599 6.4516 0.017123 0.167502 

50093 ITACYL 1 A 1500 300 1.34251 0.070164 38.4862 0.491547 13.9317 11.6839 74.3844 0 0.088922 0.141031 

50094 ITACYL 1 A 300 300 1.17213 0.078384 29.7934 1.40986 17.8785 13.0429 69.0786 0 0.014907 0.145248 

50095 ITACYL 1 A 1300 300 1.264 0.086915 19.4502 0.803052 19.8551 14.8392 65.3057 0 0.048518 0.151146 

50096 ITACYL 1 A 300 300 1.80251 0.103489 23.3149 1.23507 17.7148 23.9905 58.2947 0 0.020942 0.166264 

50097 ITACYL 1 A 1092 300 1.28703 0.106778 12.028 0.981233 25.5313 20.832 53.6367 0 0.034309 0.155813 

50098 ITACYL 1 A 300 300 1.2799 0.093958 27.3991 1.166198 18.2169 18.909 62.8741 0 0.023943 0.159327 

50099 ITACYL 1 A 300 300 1.09811 0.09966 17.5846 1.199808 20.5313 19.4462 60.0225 0 0.022428 0.156677 

50100 ITACYL 1 A 1171 300 1.18309 0.098238 13.5597 0.639872 22.8378 18.4053 58.7569 0 0.066639 0.155955 

50101 ITACYL 1 A 300 300 1.3 0.105829 18.1721 1.744186 20.7173 20.5258 58.7569 0 0.007781 0.157688 

50102 ITACYL 1 A 300 300 1.31053 0.11225 16.5094 2.512209 21.1708 24.2032 54.626 0 0.001747 0.161054 

50103 ITACYL 1 A 1300 300 1.36472 0.116011 14.9955 1.663855 22.4986 25.2749 52.2265 0 0.009096 0.161426 

50104 ITACYL 1 A 1260 300 1.19931 0.114943 5.64103 3.369064 30.2271 21.0918 48.6811 0 0.00033 0.149161 

50105 ITACYL 1 A 1260 300 1.42781 0.048439 106.996 0.771709 4.64217 7.59153 87.7663 0 0.051568 0.094407 

50106 ITACYL 1 A 1450 300 1.65014 0.070906 67.624 2.676762 10.212 14.1096 75.6784 0 0.001269 0.143934 

50107 ITACYL 1 A 1267 300 1.86201 0.054171 157.537 0.78936 2.79406 9.96934 87.2366 0 0.049828 0.10409 

50108 ITACYL 1 A 995 300 1.64897 0.08508 29.9366 1.364773 15.6646 17.0177 67.3177 0 0.016273 0.156791 

50109 ITACYL 1 A 1118 300 1.94752 0.058211 101.297 0.63336 6.11157 10.65123 83.2372 0 0.067488 0.116804 

50110 ITACYL 1 A 300 300 1.94315 0.050633 114.833 0.703733 3.5274 6.8216 89.651 0 0.058856 0.089105 

50111 ITACYL 1 A 300 300 1.84791 0.063917 93.7348 0.590552 6.59214 14.03586 79.372 0 0.073348 0.139122 

50112 ITACYL 1 A 300 300 1.92632 0.04638 106.838 0.611343 5.29489 5.92541 88.7797 0 0.070441 0.086366 

50113 ITACYL 1 A 1500 300 1.86075 0.043543 108.77 0.463405 4.62241 3.35569 92.0219 0 0.093924 0.072069 

50114 ITACYL 1 A 1187 300 1.66576 0.093723 45.6255 1.134651 16.83 20.3131 62.8569 0 0.025458 0.16302 

50115 ITACYL 1 A 300 300 1.91587 0.056751 97.1987 0.450708 4.97023 10.94087 84.0889 0 0.096272 0.115185 

50116 ITACYL 1 A 300 300 1.80639 0.04931 91.5947 0.137915 6.23308 7.27192 86.495 0 0.176885 0.096055 

50117 ITACYL 1 A 1500 300 1.51248 0.07052 27.8898 0.471474 16.4553 9.1459 74.3988 0 0.092461 0.131041 

50118 ITACYL 1 A 300 300 1.71693 0.053175 68.0912 0.471344 9.12229 7.08231 83.7954 0 0.092485 0.101867 

50119 ITACYL 1 B 1267 300 1.3991 0.093448 6.78242 0.89907 29.0447 8.7539 62.2014 0 0.040254 0.126743 
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50120 ITACYL 1 A 1500 300 1.45273 0.085825 16.1209 1.916459 22.1638 10.8486 66.9876 0 0.005565 0.135832 

50121 ITACYL 1 C 300 300 1.28215 0.111545 3.93585 1.277448 32.8813 17.4839 49.6348 0 0.019285 0.143356 

50122 ITACYL 1 A 1500 300 1.72197 0.077972 33.6533 1.026459 16.1854 12.8562 70.9584 0 0.03142 0.146031 

50123 ITACYL 1 A 600 300 1.3536 0.087079 32.5398 3.235436 15.6509 16.8409 67.5082 0 0.000428 0.154971 

50124 ITACYL 1 A 921 300 1.40233 0.092624 22.5064 1.67039 17.8993 18.8084 63.2923 0 0.008981 0.157867 

50125 ITACYL 1 A 1500 300 1.30759 0.119344 9.46553 2.537384 26.4729 25.3129 48.2142 0 0.001664 0.157181 

50126 ITACYL 1 A 1164 300 1.42874 0.108008 17.5052 2.260593 21.7199 21.7319 56.5482 0 0.00285 0.157837 

50127 ITACYL 1 B 1274 300 1.31553 0.102385 6.93371 1.229523 28.5897 14.1686 57.2417 0 0.021169 0.141065 

50128 ITACYL 1 A 300 300 1.38631 0.117491 9.53141 1.572215 25.2175 26.1124 48.6701 1.5384 0.010871 0.158423 

50129 ITACYL 1 A 300 300 1.83053 0.06389 71.6772 0.670488 7.50209 13.00511 79.4928 0 0.062787 0.135459 

50130 ITACYL 1 A 1133 300 1.98594 0.063491 117.195 1.052936 3.66393 13.97427 82.3618 0 0.029843 0.128834 

50131 ITACYL 1 A 1500 300 1.71599 0.079154 58.4708 1.364971 9.25284 17.75996 72.9872 0 0.016267 0.158722 

50132 ITACYL 1 A 1140 300 2.00699 0.078109 53.6288 0.760413 9.89256 17.72154 72.3859 0 0.052713 0.161263 

50133 ITACYL 1 A 1350 300 1.66859 0.07049 114.48 0.905215 2.94177 17.82213 79.2361 0 0.039776 0.149161 

50134 ITACYL 1 A 1100 300 1.84181 0.079023 57.3554 0.927413 9.26061 18.56369 72.1757 0 0.038095 0.16303 

50135 ITACYL 1 A 300 300 1.80312 0.080064 63.6489 1.183994 8.21967 19.12063 72.6597 0 0.023129 0.163229 

50136 ITACYL 1 A 1270 300 1.89147 0.075047 60.3333 0.923762 9.62598 16.51052 73.8635 0 0.038366 0.156187 

50137 ITACYL 1 A 300 300 1.81243 0.073152 69.1115 0.975227 8.1537 15.6825 76.1638 0 0.034712 0.150475 

50138 ITACYL 1 A 300 300 1.77287 0.067254 67.7999 0.833006 7.80391 14.40089 77.7952 0 0.045773 0.143758 

50139 ITACYL 1 A 300 300 1.65745 0.092225 68.4971 1.048727 6.30223 25.85687 67.8409 0 0.030089 0.179382 

50140 ITACYL 1 A 300 300 1.76848 0.059386 123.075 0.733448 3.49642 13.15888 83.3447 0 0.055551 0.124098 

50141 ITACYL 1 A 300 300 1.89864 0.085945 87.0096 0.982453 4.77359 23.93551 71.2909 0 0.034228 0.176118 

50142 ITACYL 1 A 300 300 1.75598 0.056105 128.202 0.704116 3.94737 12.27283 83.7798 0 0.058812 0.120037 

50143 ITACYL 1 A 1347 300 1.49503 0.097247 12.1418 1.340669 24.5246 15.0655 60.4099 0 0.017054 0.146113 

50144 ITACYL 1 A 1357 300 1.55565 0.102356 8.93943 0.384727 25.8743 17.8557 56.27 0 0.109453 0.152249 

50145 ITACYL 1 A 1332 300 1.37664 0.088723 11.6459 0.637308 27.3449 9.0898 63.5653 0 0.066972 0.129627 

50146 ITACYL 1 A 1192 300 1.42915 0.088775 17.5281 0.75232 22.403 12.9513 64.6457 0 0.053549 0.144755 

50147 ITACYL 1 A 300 300 1.2629 0.095156 11.2534 1.86475 24.8868 14.3406 60.7726 0 0.006154 0.143198 

50148 ITACYL 1 A 1239 300 1.43446 0.062717 43.8682 0.564351 14.1961 7.8989 77.905 0 0.077182 0.120222 

50149 ITACYL 1 A 300 300 0.962232 0.124448 17.6395 0.636942 21.9003 32.4031 45.6966 0 0.06702 0.170125 

50150 ITACYL 1 A 300 300 1.10627 0.104912 15.1651 0.641715 21.6172 20.0478 58.335 0 0.066401 0.159384 
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50151 ITACYL 1 A 300 300 0.913757 0.134177 8.2638 1.027942 25.6355 35.1313 39.2332 0 0.03133 0.167915 

50152 ITACYL 1 B 300 300 1.07137 0.128049 8.18784 0.867919 25.8001 31.2776 42.9223 1.5385 0.042768 0.164992 

50153 ITACYL 1 B 300 300 0.913757 0.141897 6.13008 1.51575 24.1556 47.6327 28.2117 15.7895 0.012132 0.167352 

50154 ITACYL 1 C 300 300 1.07137 0.144648 4.08229 1.470901 34.1341 38.6472 27.2187 0 0.013238 0.165695 

50155 ITACYL 1 B 300 300 1.13934 0.13204 4.69036 1.022517 31.0083 33.0339 35.9578 2.0408 0.031662 0.161455 

50156 ITACYL 1 B 1433 300 1.38744 0.093988 6.82293 1.017756 28.3765 9.7755 61.848 0 0.031957 0.130423 

50157 ITACYL 1 A 1500 300 1.3707 0.086322 9.61687 0.5558 26.8181 7.9136 65.2683 0 0.078476 0.12549 

50158 ITACYL 1 A 1100 300 1.64182 0.076261 23.7973 0.239272 18.14 12.728 69.132 0 0.145239 0.146734 

50159 ITACYL 1 A 1219 300 1.53965 0.08025 31.2703 0.672331 18.7237 12.3506 68.9257 0 0.062562 0.145019 

50160 ITACYL 1 C 1300 300 1.36978 0.110447 2.79538 0.895965 34.9883 15.005 50.0067 0 0.040498 0.137657 

50161 ITACYL 1 A 300 300 1.56 0.087 17.25 2.034884 20 39.6633 40.3367 25.4633 0.004421 0.14991 

50162 ITACYL 1 A 1350 300 1.39468 0.09594 14.3786 1.114273 22.9669 15.345 61.6881 0 0.026488 0.148839 

50163 ITACYL 1 A 1500 300 1.36368 0.098739 10.9561 2.337808 24.1391 17.2942 58.5667 0 0.002453 0.149207 

50164 ITACYL 1 A 1267 300 1.39823 0.107016 11.8968 2.264419 24.7626 19.997 55.2404 0 0.002829 0.15271 

50165 ITACYL 1 B 1500 300 1.63053 0.104449 6.724 0.332763 27.5564 17.858 54.5856 0 0.121093 0.150716 

50166 ITACYL 1 B 1332 300 1.4726 0.098861 7.51071 1.275895 27.1062 15.5177 57.3761 0 0.019343 0.144926 

50167 ITACYL 1 A 1442 300 1.61901 0.095646 14.6294 0.65275 23.2481 16.4344 60.3175 0 0.064991 0.151964 

50168 ITACYL 1 A 300 300 1.19204 0.08563 19.8021 1.322599 19.355 14.7097 65.9353 0 0.017664 0.14945 

50169 ITACYL 1 A 300 300 1.05459 0.094286 17.6199 1.023145 20.6055 18.0893 61.3052 0 0.031624 0.156357 

50170 ITACYL 1 A 300 300 1.19416 0.089877 19.9101 1.259163 19.0359 16.8013 64.1628 0 0.019983 0.154481 

50171 ITACYL 1 A 300 300 1.15463 0.074543 37.5846 1.339052 13.6698 14.5517 71.7785 1.2987 0.017108 0.148162 

50172 ITACYL 1 A 1200 300 1.91228 0.07394 74.8907 0.992047 7.34029 16.97041 75.6893 0 0.033595 0.15486 

50173 ITACYL 1 A 1307 300 1.68474 0.045975 52.9508 1.734779 13.1934 12.5442 74.2624 0 0.007924 0.141142 

50174 ITACYL 1 A 1260 300 1.86234 0.058847 92.7159 1.366756 6.52372 9.63598 83.8403 0 0.01621 0.109856 

50175 ITACYL 1 A 1200 300 1.85635 0.067093 89.0128 0.90682 6.28856 14.17284 79.5386 0 0.039652 0.138387 

50176 ITACYL 1 A 1200 300 1.74182 0.078495 46.5602 1.021977 11.8543 16.5729 71.5728 0 0.031696 0.15747 

50177 ITACYL 1 A 1329 300 1.70066 0.079883 40.9363 1.035331 12.8805 16.2831 70.8364 0 0.030883 0.156743 

50178 ITACYL 1 A 1200 300 1.90574 0.080904 29.7982 0.730424 15.2829 15.3379 69.3792 0 0.055879 0.15475 

50179 ITACYL 1 A 1250 300 1.87245 0.07233 44.9844 0.793884 12.0921 13.3292 74.5787 0 0.049391 0.146052 

50180 ITACYL 1 A 1308 300 1.87244 0.06671 90.5652 0.938308 6.03222 14.64848 79.3193 0 0.037296 0.140333 

50181 ITACYL 1 A 1320 300 2.02898 0.061636 103.18 0.553963 5.14672 14.06298 80.7903 0 0.078757 0.134998 
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50182 ITACYL 1 A 1253 300 2.10727 0.05552 136.965 0.548681 3.48515 11.19155 85.3233 0 0.07957 0.11276 

50183 ITACYL 1 A 300 300 1.67633 0.063818 94.9688 0.721093 5.45606 14.11774 80.4262 0 0.056902 0.136196 

50184 ITACYL 1 A 1500 300 1.96885 0.051666 128.387 0.584395 5.5188 8.3402 86.141 0 0.074231 0.101329 

50185 ITACYL 1 A 1288 300 1.75339 0.094632 108.403 1.367157 1.86021 29.30129 68.8385 0 0.016198 0.185366 

50186 ITACYL 1 A 1300 300 1.88707 0.081792 108.231 0.584605 3.34362 23.10468 73.5517 0 0.074201 0.173946 

50187 ITACYL 1 A 1300 300 1.81627 0.070634 67.1099 0.70675 8.03014 15.68136 76.2885 0 0.058512 0.150923 

50188 ITACYL 1 A 1257 300 1.87951 0.082914 119.099 1.084093 2.12726 24.56074 73.312 0 0.028089 0.176025 

50189 ITACYL 1 A 300 300 1.8109 0.082128 72.5529 1.146262 6.58026 20.77114 72.6486 0 0.02489 0.167516 

50190 ITACYL 1 A 300 300 1.80934 0.064449 82.1204 1.013273 6.82683 13.31297 79.8602 0 0.032237 0.134599 

50191 ITACYL 1 A 300 300 1.6 0.084973 121.085 2.034884 1.81135 23.72225 74.4664 0 0.004421 0.17038 

50192 ITACYL 1 A 300 300 1.90421 0.058547 125.31 0.665669 4.45079 13.64121 81.908 0 0.063378 0.131183 

50193 ITACYL 1 A 300 300 1.55719 0.084193 105.189 1.241297 3.75859 23.56231 72.6791 0 0.02069 0.174081 

50194 ITACYL 1 A 1500 300 1.36627 0.095561 17.7494 1.4565 22.0184 17.4897 60.4919 0 0.013614 0.152509 

50195 ITACYL 1 B 300 300 1.3539 0.107129 6.69666 1.308669 26.6471 22.7662 50.5867 6.3492 0.018149 0.147303 

50196 ITACYL 1 B 300 300 1.264 0.107761 4.52573 2.083552 30.9475 16.9253 52.1272 1.0638 0.004021 0.140806 

50197 ITACYL 1 A 300 300 1.16794 0.089063 18.3386 1.20468 19.578 16.5965 63.8255 0 0.022217 0.153087 

50198 ITACYL 1 A 1224 300 1.13945 0.094559 13.805 0.889064 22.8597 15.9289 61.2114 0 0.041045 0.150839 

50199 ITACYL 1 A 1173 300 1.41349 0.073566 32.9554 0.517117 14.7345 13.106 72.1595 0 0.084608 0.147621 

50200 ITACYL 1 A 300 300 1.86965 0.066616 86.2501 1.024523 5.93544 15.34636 78.7182 0 0.031539 0.143683 

50201 ITACYL 1 A 300 300 1.76778 0.061129 103.579 0.914326 5.17872 12.65898 82.1623 0 0.039077 0.125948 

50202 ITACYL 1 A 1131 300 1.50944 0.096479 21.9261 2.446558 21.4876 15.8053 62.7071 0 0.001985 0.148815 

50203 ITACYL 1 A 1500 300 2.04533 0.069929 66.1459 0.409017 7.9557 15.2027 76.8416 0 0.104403 0.148804 

50204 ITACYL 1 A 1200 300 2.00394 0.061118 80.8524 0.531305 7.56786 12.18734 80.2448 0 0.082305 0.130893 

50205 ITACYL 1 A 1350 300 1.84462 0.095743 14.5471 0.351419 20.4976 20.0277 59.4747 0 0.116778 0.160739 

50206 ITACYL 1 A 1105 300 1.69902 0.075962 47.16 1.526372 12.6613 13.5586 73.7801 0 0.011884 0.14534 

50207 ITACYL 1 A 1071 300 1.91692 0.077306 39.9209 0.778866 13.6244 14.8639 71.5117 0 0.050855 0.153127 

50208 ITACYL 1 A 1500 300 1.74693 0.076585 48.0851 0.843267 10.6427 16.8424 72.5149 0 0.044868 0.158392 

50209 ITACYL 1 A 300 300 1.80354 0.09314 68.9127 0.978076 6.20541 26.28419 67.5104 0 0.034521 0.180377 

50210 ITACYL 1 A 300 300 1.22331 0.101122 20.1129 4.482337 19.2177 20.4351 60.3472 0 3.79E-05 0.158501 

50211 ITACYL 1 A 975 300 1.49005 0.055994 60.74789 2.61407 0.802434 30.8382 68.35937 21.85684 0.001433 0.18295 

50212 ITACYL 1 A 300 300 1.45 0.055823 80.4267 2.616279 0.147508 26.41072 73.44177 14.63845 0.001427 0.176467 



 

143 

 

MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50213 ITACYL 1 A 300 300 1 0.126155 10.4839 2.674419 27.1065 26.2324 46.6611 0 0.001274 0.157496 

50214 ITACYL 1 A 300 300 1.1439 0.107752 13.5655 6.319128 23.2946 20.0364 56.669 0 1.06E-06 0.154059 

50215 ITACYL 1 A 300 300 1.50195 0.107427 11.0991 1.790047 25.796 18.8199 55.3841 0 0.007117 0.150413 

50216 ITACYL 1 A 300 300 1.44062 0.082689 26.6759 2.648645 16.64188 13.66009 69.69803 1.86721 0.00134 0.142592 

50217 ITACYL 1 A 300 300 1.59135 0.089822 20.0716 0.984314 20.0676 15.3726 64.5598 0 0.034104 0.150258 

50218 ITACYL 1 B 1134 300 1.31938 0.093759 6.39993 1.825279 29.0411 8.7954 62.1635 0 0.006645 0.124705 

50219 ITACYL 1 A 1200 300 1.41258 0.095086 9.59283 1.366599 25.7367 12.5804 61.6829 0 0.016215 0.139406 

50220 ITACYL 1 A 300 300 1.41718 0.117177 10.4757 2.346552 24.6971 25.8119 49.491 0 0.002411 0.159465 

50221 ITACYL 1 A 300 300 1.15 0.093916 12.1009 2.906977 23.0739 15.6239 61.3022 0 0.000811 0.147077 

50222 ITACYL 1 A 1500 300 1.67528 0.100543 7.944 0.235594 25.9639 17.0511 56.985 0 0.146281 0.150886 

50223 ITACYL 1 A 1425 300 1.46184 0.102263 11.0174 1.420814 24.6971 18.6429 56.66 0 0.014593 0.151964 

50224 ITACYL 1 A 1300 300 1.57812 0.083703 83.555 2.940576 8.44016 17.98744 73.5724 0 0.000759 0.157602 

50225 ITACYL 1 B 1367 300 1.40637 0.093458 5.24041 0.239445 30.4498 8.2501 61.3001 0 0.14519 0.124579 

50226 ITACYL 1 C 1500 300 1.41025 0.107329 1.19164 0.430319 37.0865 10.6136 52.2999 0 0.100166 0.127114 

50227 ITACYL 1 C 1500 300 1.45829 0.101372 2.91748 0.240123 33.93 9.3338 56.7362 0 0.144999 0.125739 

50228 ITACYL 1 B 1500 300 1.37343 0.100165 5.29796 0.990198 30.2026 11.4933 58.3041 0 0.033716 0.134114 

50229 ITACYL 1 A 1230 300 1.81958 0.060163 101.422 1.208041 5.5444 11.1516 83.304 0 0.022072 0.116839 

50230 ITACYL 1 A 300 300 1.83009 0.071216 85.6899 0.837186 6.00093 16.87897 77.1201 0 0.045402 0.152403 

50231 ITACYL 1 A 1282 300 2.10272 0.043905 210.859 0.437159 1.29833 6.56117 92.1405 0 0.098843 0.088877 

50232 ITACYL 1 A 300 300 1.94715 0.055163 112.736 0.78564 4.17606 10.74644 85.0775 0 0.050189 0.111321 

50233 ITACYL 1 A 300 300 1.78743 0.04203 190.651 0.728331 0.858965 5.276435 93.8646 0 0.056107 0.085687 

50234 ITACYL 1 A 300 300 1.85 0.080162 121.919 0.988372 1.92568 22.93452 75.1398 0 0.033836 0.170463 

50235 ITACYL 1 A 300 300 1.16534 0.087496 24.1035 1.231198 16.4625 20.7074 62.8301 4 0.0211 0.158562 

50236 ITACYL 1 A 300 300 1.39163 0.095714 15.0734 1.050116 21.9398 17.5442 60.516 0 0.030008 0.154111 

50237 ITACYL 1 A 1500 300 1.20605 0.104146 16.2053 1.019023 22.0615 22.4645 55.474 0 0.031878 0.159169 

50238 ITACYL 1 A 300 300 1.24652 0.101587 23.5434 2.885936 19.8615 17.8806 62.2579 0 0.000845 0.154 

50239 ITACYL 1 A 300 300 1.47215 0.106642 13.5107 2.368785 22.6507 19.7569 57.5924 0 0.002309 0.154352 

50240 ITACYL 1 A 300 300 1.39101 0.099262 15.6712 3.403087 22.1664 16.5394 61.2942 0 0.000309 0.149596 

50241 ITACYL 1 A 720 300 1.14363 0.095286 22.5049 4.850669 19.8631 16.0122 64.1247 0 1.85E-05 0.150483 

50242 ITACYL 1 A 300 300 1.3004 0.087415 20.5669 3.527523 19.8128 12.8718 67.3154 0 0.000243 0.142877 

50243 ITACYL 1 A 780 300 1.1259 0.098713 13.7627 3.602297 22.938 15.856 61.206 0 0.00021 0.147637 



 

144 

 

MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50244 ITACYL 1 A 300 300 1.29355 0.087267 26.6798 5.02289 17.6378 14.9894 67.3728 0 1.32E-05 0.149583 

50245 ITACYL 1 A 900 300 1.13805 0.09227 18.1752 5.37475 20.7166 15.2361 64.0473 0 6.68E-06 0.148198 

50246 ITACYL 1 A 300 300 1.40623 0.095456 29.8955 1.922233 16.3882 18.9352 64.6766 0 0.005503 0.158968 

50247 ITACYL 1 B 1420 300 1.30512 0.106204 9.73435 2.250581 26.4513 18.5808 54.9679 0 0.002906 0.149136 

50248 ITACYL 1 A 300 300 1.3436 0.10235 22.8486 1.923971 18.7742 19.9331 61.2927 0 0.005485 0.158492 

50249 ITACYL 1 A 938 300 1.45881 0.09599 17.8777 2.04136 21.19 15.0979 63.7121 0 0.004365 0.147718 

50250 ITACYL 1 A 950 300 1.32497 0.09059 15.276 2.354709 22.1508 12.5966 65.2526 0 0.002373 0.140861 

50251 ITACYL 1 A 1278 300 1.5521 0.078787 16.4711 0.664047 21.634 9.4405 68.9255 0 0.063579 0.133797 

50252 ITACYL 1 A 1350 300 1.86321 0.06792 79.9175 0.904215 6.07284 15.96116 77.966 0 0.039853 0.147663 

50253 ITACYL 1 A 1391 300 2.00672 0.071388 56.6183 0.547949 9.69453 15.13657 75.1689 0 0.079684 0.151364 

50254 ITACYL 1 A 1260 300 1.80205 0.065259 154.526 0.696256 0.842352 17.06205 82.0956 0 0.059718 0.138558 

50255 ITACYL 1 B 1329 300 1.13394 0.117921 4.24534 3.533174 32.2645 21.8984 45.8371 0 0.00024 0.148486 

50256 ITACYL 1 A 1500 300 2.07129 0.047164 178.821 0.549416 2.29564 7.81416 89.8902 0 0.079457 0.093946 

50257 ITACYL 1 A 300 300 1.8825 0.058833 94.9712 0.654105 5.29601 11.03069 83.6733 0 0.06482 0.117102 

50258 ITACYL 1 A 300 300 1.71541 0.06553 73.9491 0.877523 7.15139 14.20981 78.6388 0 0.041976 0.141009 

50259 ITACYL 1 A 300 300 1.70146 0.058473 112.764 0.864343 3.80422 12.52248 83.6733 0 0.043066 0.120736 

50260 ITACYL 1 A 300 300 1.91468 0.057606 110.078 0.497623 4.42744 12.49676 83.0758 0 0.087877 0.123098 

50261 ITACYL 1 A 300 300 1.83973 0.044048 191.184 0.605756 1.25736 6.87494 91.8677 0 0.071211 0.089453 

50262 ITACYL 1 A 300 300 1.78927 0.047238 161.85 1.038721 1.29377 7.19303 91.5132 0 0.03068 0.08956 

50263 ITACYL 1 A 300 300 1.74436 0.044717 183.309 0.861203 1.91184 6.96806 91.1201 0 0.04333 0.089264 

50264 ITACYL 1 A 300 300 1.72385 0.073647 114.829 0.705372 3.66563 19.80737 76.527 0 0.058669 0.161626 

50265 ITACYL 1 A 300 300 1.92853 0.039998 242.298 0.271062 0.103033 5.066367 94.8306 0 0.136531 0.08809 

50266 ITACYL 1 A 300 300 1.82306 0.043115 156.16 0.596605 2.76225 5.50515 91.7326 0 0.072489 0.083928 

50267 ITACYL 1 A 300 300 2.00983 0.047355 199.852 0.330599 0.406249 8.748951 90.8448 0 0.121604 0.095842 

50268 ITACYL 1 A 300 300 2.02542 0.082545 52.1555 0.575872 9.63235 20.32275 70.0449 0 0.075472 0.168737 

50269 ITACYL 1 A 300 300 1.41976 0.089838 43.0559 1.086442 12.4865 20.3079 67.2056 0 0.027961 0.16637 

50270 ITACYL 1 A 300 300 1.09641 0.081806 33.0815 1.119395 15.8178 13.8179 70.3643 0 0.026225 0.148941 

50271 ITACYL 1 A 300 300 1.31392 0.081707 26.3496 0.95561 18.3513 12.5144 69.1343 0 0.036062 0.144989 

50272 ITACYL 1 A 300 300 1.21252 0.098202 16.153 0.880529 20.8076 18.9687 60.2237 0 0.041732 0.158048 

50273 ITACYL 1 A 300 300 1.82801 0.060455 101.405 0.697738 5.351 12.2564 82.3926 0 0.059546 0.124527 

50274 ITACYL 1 A 300 300 1.80569 0.062829 79.8319 0.830599 6.73467 12.79473 80.4706 0 0.045987 0.131704 
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MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50275 ITACYL 1 A 300 300 1.69248 0.047949 161.698 0.735628 2.35403 7.99417 89.6518 0 0.055316 0.093636 

50276 ITACYL 1 A 300 300 1.84942 0.054995 93.3212 0.459265 6.29645 9.52145 84.1821 0 0.094683 0.11025 

50277 ITACYL 1 A 1157 300 1.78041 0.06982 80.0228 1.266413 7.14568 15.41712 77.4372 0 0.019703 0.146141 

50278 ITACYL 1 A 1380 300 1.44921 0.053 92.3877 0.46664 7.15262 9.09298 83.7544 0 0.093335 0.109919 

50279 ITACYL 1 A 1260 300 1.80322 0.062436 96.2012 1.267517 6.72528 12.69102 80.5837 0 0.019661 0.129784 

50280 ITACYL 1 A 300 300 1.85091 0.051609 160.382 0.599436 2.47861 9.88269 87.6387 0 0.072091 0.102913 

50281 ITACYL 1 A 300 300 1.79335 0.062679 81.8404 0.764157 6.7812 12.8735 80.3453 0 0.052331 0.132452 

50282 ITACYL 1 A 300 300 1.9713 0.04342 563.409 0.307655 1.9043 6.9297 91.166 0 0.127153 0.090095 

50283 ITACYL 1 A 300 300 1.7821 0.057064 144.537 0.725523 2.48215 12.93925 84.5786 0 0.056414 0.119493 

50284 ITACYL 1 A 1152 300 1.45859 0.067064 42.8272 0.585093 14.9497 9.1701 75.8802 0 0.07413 0.129254 

50285 ITACYL 1 A 300 300 1.80241 0.055668 87.5867 0.496226 6.46027 10.21893 83.3208 0 0.088116 0.115121 

50286 ITACYL 1 A 300 300 1.79406 0.05703 75.6191 0.629279 7.70768 9.50472 82.7876 0 0.068026 0.114108 

50287 ITACYL 1 A 300 300 1.31938 0.064639 41.052 0.437266 13.8513 9.3891 76.7596 0 0.098822 0.128899 

50288 ITACYL 1 A 300 300 1.91376 0.055515 86.7527 0.307565 6.41444 10.38736 83.1982 0 0.127175 0.116152 

50289 ITACYL 1 A 300 300 1.21976 0.084874 26.9721 1.040872 17.9192 14.0392 68.0416 0 0.030552 0.149459 

50290 ITACYL 1 A 300 300 1.0785 0.074361 38.7767 1.410128 8.87672 18.20568 72.9176 5.32658 0.014899 0.153858 

50291 ITACYL 1 A 300 300 0.675329 0.096179 13.5277 4.438849 22.7143 17.8432 59.4425 0 4.12E-05 0.151352 

50292 ITACYL 1 A 300 300 1.28002 0.070955 27.8803 0.913605 17.8783 7.2035 74.9182 0 0.039132 0.120838 

50293 ITACYL 1 A 1113 300 1.73754 0.052605 132.191 0.675186 5.94455 7.71595 86.3395 0 0.062216 0.098494 

50294 ITACYL 1 A 1083 300 1.79843 0.055977 125.823 0.811791 5.14046 10.56294 84.2966 0 0.047701 0.113494 

50295 ITACYL 1 A 300 300 1.81303 0.066688 86.1096 0.622797 5.45904 15.79746 78.7435 0 0.068889 0.145782 

50296 ITACYL 1 A 300 300 1.76556 0.051888 135.924 0.553409 4.21673 9.74067 86.0426 0 0.078842 0.105939 

50297 ITACYL 1 A 300 300 1.73977 0.059888 106.787 0.914 3.7924 12.681 83.5266 0 0.039102 0.121564 

50298 ITACYL 1 A 1380 300 1.13514 0.083585 23.7948 0.981407 17.8281 13.9879 68.184 0 0.034298 0.149547 

50299 ITACYL 1 A 1500 300 1.33494 0.072398 32.7849 0.838047 15.5355 10.9578 73.5067 0 0.045326 0.138615 

50300 ITACYL 1 A 300 300 1.1782 0.088345 17.5233 0.822744 21.1286 14.3944 64.477 0 0.046695 0.149137 

50301 ITACYL 1 A 300 300 1.18447 0.112131 7.59591 0.721959 26.6464 22.1756 51.178 0 0.056806 0.157142 

50302 ITACYL 1 A 300 300 1.12455 0.091756 18.7407 0.933849 19.8984 17.3654 62.7362 1.5038 0.037621 0.153725 

50303 ITACYL 1 A 1275 300 1.93862 0.092994 81.9696 0.666907 3.12145 30.01905 66.8595 0 0.063226 0.188245 

50304 ITACYL 1 A 1300 300 1.85455 0.066036 105.36 0.832174 4.14333 16.54927 79.3074 0 0.045847 0.145843 

50305 ITACYL 1 A 300 300 1.71224 0.101981 105.691 0.728826 1.53111 34.13309 64.3358 0 0.056053 0.193428 
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MUID S5ID NLAYERS HYDGRP SOL_ZMX SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 ROCK1 SOL_ALB1 USLE_K1 

50306 ITACYL 1 A 300 300 1.57082 0.095296 108.162 1.576012 2.14322 28.70198 69.1548 0 0.010791 0.183855 

50307 ITACYL 1 A 300 300 1.88621 0.061655 175.768 0.838762 0 16.2383 83.7617 0 0.045263 0.130271 

50308 ITACYL 1 A 300 300 1.33437 0.075007 153.327 1.021541 0 21.708 78.292 0 0.031722 0.160644 

50309 ITACYL 1 A 300 300 1.56586 0.098839 58.8897 1.324936 6.93938 28.77332 64.2873 0 0.017584 0.181375 

50310 ITACYL 1 A 300 300 1.77349 0.084373 93.0885 0.98107 6.85463 22.84097 70.3044 0 0.03432 0.173735 

50311 ITACYL 1 A 300 300 1.67424 0.099188 29.2512 0.979006 15.4109 22.6337 61.9554 0 0.034458 0.168213 

50312 ITACYL 1 B 1433 300 1.06598 0.098613 8.55009 2.464378 26.695 14.5988 58.7062 0 0.001917 0.141911 

50313 ITACYL 1 A 300 300 1.27882 0.087989 23.5542 0.691645 17.7589 15.5048 66.7363 0 0.060256 0.154287 

50314 ITACYL 1 A 300 300 0.998666 0.095711 12.7032 2.932965 22.8222 16.2833 60.8945 0 0.000771 0.148555 

50315 ITACYL 1 A 300 300 1.28361 0.099167 15.968 1.115459 21.4638 18.2778 60.2584 0 0.026427 0.155534 

50316 ITACYL 1 A 300 300 1.15919 0.103327 12.9968 1.233733 23.5525 17.7563 58.6912 0 0.020996 0.152286 

50317 ITACYL 1 A 1088 300 1.9016 0.084703 118.332 1.37968 2.03305 24.47685 73.4901 0 0.015808 0.174452 

50318 ITACYL 1 A 1350 300 1.88181 0.071614 119.469 0.64589 2.7013 19.1697 78.129 0 0.065864 0.156226 

50319 ITACYL 1 A 300 300 1.85047 0.083409 136.918 1.528145 0.729676 23.62462 75.6457 0 0.011843 0.169183 

50320 ITACYL 1 A 300 300 1.51514 0.075977 152.088 0.763151 0 21.5952 78.4048 0 0.052433 0.160843 

50321 ITACYL 1 A 300 300 1.73909 0.054565 164.031 0.800913 2.26503 11.36237 86.3726 0 0.048721 0.110303 

50322 ITACYL 1 A 300 300 1.84646 0.10192 74.0319 1.71982 6.57161 30.46529 62.9631 0 0.008158 0.182162 

50323 ITACYL 1 A 300 300 1.136 0.089757 17.5021 2.965116 21.0883 12.8352 66.0765 0 0.000724 0.142111 

50324 ITACYL 1 A 1033 300 1.27896 0.098087 18.1305 3.558988 21.192 17.3144 61.4936 0 0.000228 0.151841 

50325 ITACYL 1 A 300 300 1.26071 0.092454 17.4087 3.043244 21.0187 15.06203 63.91927 1.13807 0.000622 0.145552 

50326 ITACYL 1 A 955 300 1.28058 0.085104 25.9678 4.33218 18.1419 13.394 68.4641 0 5.07E-05 0.145046 

50327 ITACYL 1 A 1220 300 1.40097 0.10115 19.174 1.99936 20.7179 18.0976 61.1845 0 0.004737 0.153807 

50328 ITACYL 1 A 1156 300 1.30536 0.082604 17.5189 2.043023 21.8977 9.7577 68.3446 0 0.004351 0.132023 

50329 ITACYL 1 A 300 300 0.96 0.099064 24.9891 2.965116 19.1971 16.2173 64.5856 0 0.000724 0.151415 

50330 ITACYL 1 A 300 300 1.2803 0.111858 18.7532 3.928151 21.2655 22.5203 56.2142 0 0.000111 0.159111 

50331 ITACYL 1 A 300 300 1.13474 0.077716 37.2828 5.582762 14.6697 12.8825 72.4478 0 4.46E-06 0.14317 

50332 ITACYL 1 A 300 300 1.342596 0.106172 10.261 1.956058 25.6226 18.2098 56.1676 0 0.005153 0.149484 

50333 ITACYL 1 A 300 300 1.3568 0.099784 13.8666 3.548512 23.904 16.3058 59.7902 0 0.000233 0.147627 

50334 ITACYL 1 A 1408 300 1.90802 0.076414 50.8407 0.813953 11.2092 16.3586 72.4322 0 0.0475 0.157134 

50335 ITACYL 1 A 750 300 1.39454 0.068636 51.5016 2.334273 1.86216 29.22518 68.91266 18.24957 0.00247 0.178391 

50336 ITACYL 1 A 750 300 1.65766 0.060568 137.69 2.809186 2.63863 11.93487 85.4265 0 0.000981 0.112393 
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50337 ITACYL 1 A 1067 300 1.58409 0.091165 76.54 1.833337 7.08423 22.22557 70.6902 0 0.006542 0.169625 

50338 ITACYL 1 A 1300 300 1.79224 0.071297 131.163 0.948884 2.30917 18.33573 79.3551 0 0.036537 0.150325 

50339 ITACYL 1 A 300 300 1.93365 0.064082 128.54 0.826808 3.21993 15.10327 81.6768 0 0.046328 0.134829 

50340 ITACYL 1 A 922 300 1.60969 0.056287 86.6157 2.314483 1.1725 56.51042 42.31708 45.88724 0.002566 0.188931 

50341 ITACYL 1 A 1167 300 2.02806 0.06802 75.4059 0.408658 7.22861 14.63079 78.1406 0 0.104476 0.144204 

50342 ITACYL 1 A 1200 300 2.15645 0.073061 86.96 0.347011 4.7871 20.0958 75.1171 0 0.117784 0.165043 

50343 ITACYL 1 A 1500 300 1.98129 0.072966 73.3039 0.563581 6.66895 18.93625 74.3948 0 0.077298 0.162923 

50000 ITACYL 1 B 300 300 1.38013 0.107845 7.89307 1.332884 27.1017 19.5217 53.3766 0 0.017314 0.151298 

50001 ITACYL 1 A 300 300 1.8563 0.077623 65.2473 0.883808 9.02159 18.01111 72.9673 0 0.041466 0.161275 

50344 ITACYL 1 A 1181 300 1.77952 0.071884 82.102 0.812767 5.70292 18.48148 75.8156 0 0.04761 0.159184 

50345 ITACYL 1 C 300 300 1.46229 0.111849 2.77037 0.47248 32.8274 21.4352 45.7374 5.4053 0.092281 0.142959 

50346 ITACYL 1 A 300 300 1.33859 0.096405 9.32927 0.808238 26.0254 15.8105 58.1641 0 0.048031 0.146907 

50347 ITACYL 1 B 1425 300 1.46106 0.091259 6.93364 0.32869 27.9866 9.235 62.7784 0 0.122056 0.129928 

50348 ITACYL 1 B 1074 300 1.36013 0.094741 9.90348 0.312916 25.482 15.3267 59.1913 0 0.125858 0.148104 

50349 ITACYL 1 A 1350 300 1.47709 0.063699 50.0507 0.964169 11.8745 10.9887 77.1368 0 0.035467 0.133563 

50350 ITACYL 1 A 1216 300 1.33862 0.074311 31.6203 0.697535 16.4735 11.9249 71.6016 0 0.05957 0.143462 

50351 ITACYL 1 A 1150 300 1.51107 0.093826 19.4346 0.726628 19.6236 17.9711 62.4053 0 0.056293 0.157876 

50352 ITACYL 1 A 300 300 0.986206 0.079089 33.7552 1.397977 15.5419 11.5192 72.9389 0 0.015255 0.139353 

50353 ITACYL 1 A 1247 300 1.36871 0.100998 7.63323 2.287471 26.7641 16.9742 56.2617 0 0.002705 0.146293 

50354 ITACYL 1 A 1500 300 1.7739 0.083136 48.1432 1.26936 10.1677 20.2778 69.5545 0 0.019591 0.166431 

50355 ITACYL 1 A 1188 300 1.86432 0.069046 87.6724 0.786297 5.98296 16.55004 77.467 0 0.050125 0.150797 

50356 ITACYL 1 A 300 300 1.79206 0.057535 116.076 0.720052 4.32339 11.39621 84.2804 0 0.057017 0.115922 

50357 ITACYL 1 A 1200 300 1.11715 0.078461 23.9077 0.74389 17.7717 12.2346 69.9937 0 0.054435 0.144651 

50358 ITACYL 1 A 1260 300 2.13536 0.071174 150.816 0.795826 0.422756 19.55324 80.024 0 0.049205 0.151219 

50359 ITACYL 1 B 1136 300 1.45745 0.097502 6.94483 1.022087 27.6914 12.6025 59.7061 0 0.031689 0.13896 

50360 ITACYL 1 A 1118 300 1.30325 0.089027 18.6284 0.473854 20.0267 16.0964 63.8769 0 0.092035 0.154307 

50361 ITACYL 1 A 300 300 1.38923 0.106347 13.4993 2.279395 21.75 18.25 60 0 0.002748 0.154866 

50362 ITACYL 1 A 300 300 1.42668 0.083064 18.2047 1.99936 17.5606 17.63239 64.80701 6.508864 0.004737 0.144127 

50363 ITACYL 1 A 300 300 1.2141 0.080259 17.6002 2.079227 15.35426 24.38234 60.2634 12.10703 0.004055 0.151784 

50364 ITACYL 1 A 914 300 1.45878 0.096678 21.3684 1.69286 19.1009 19.2209 61.6782 0 0.008597 0.154224 

50365 ITACYL 1 A 1133 300 1.53451 0.083021 15.4969 1.014023 22.3173 9.5018 68.1809 0 0.03219 0.13307 
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50366 ITACYL 1 B 1350 300 1.36465 0.102925 4.88418 0.462505 30.7865 14.2416 54.9719 0 0.094088 0.14108 

50367 ITACYL 1 A 300 300 1.89843 0.095049 90.2328 1.010924 3.50982 28.61188 67.8783 0 0.032384 0.18512 

50368 ITACYL 1 A 1100 300 1.7351 0.069894 122.341 1.519512 2.87487 16.63123 80.4939 0 0.012044 0.140483 

50369 ITACYL 1 A 1300 300 1.73437 0.063155 127.505 1.483919 3.14471 13.46159 83.3937 0 0.012907 0.122842 

50370 ITACYL 1 A 1100 300 1.87134 0.069135 125.572 1.431878 2.49141 16.70979 80.7988 0 0.014282 0.139891 

50371 ITACYL 1 A 1200 300 1.88813 0.064251 87.2285 0.771948 6.24543 13.22627 80.5283 0 0.051544 0.132967 

50372 ITACYL 1 A 1269 300 1.78169 0.065105 140.392 1.329134 2.16004 16.58136 81.2586 0 0.017441 0.138424 

50373 ITACYL 1 A 1329 300 2.01489 0.060445 82.2399 0.711552 7.06836 11.67304 81.2586 0 0.057968 0.126006 

50374 ITACYL 1 A 300 300 1.64358 0.072785 133.748 1.578419 1.91691 18.17959 79.9035 0 0.01074 0.146006 

50375 ITACYL 1 A 1233 300 1.90363 0.068659 141.032 1.070698 1.36708 17.73702 80.8959 0 0.02883 0.143367 

50376 ITACYL 1 A 300 300 1.78982 0.070357 147.841 1.129506 0.903575 18.48463 80.6118 0 0.025714 0.145882 

50377 ITACYL 1 A 300 300 1.57845 0.088709 119.601 1.970128 1.72333 25.59577 72.6809 0 0.005014 0.176097 

50378 ITACYL 1 A 300 300 1.91379 0.056638 122.37 0.627116 4.44694 11.81846 83.7346 0 0.068313 0.118919 

50379 ITACYL 1 A 300 300 1.06002 0.089779 20.4787 1.083413 19.3333 16.5484 64.1183 0 0.028126 0.154404 

50380 ITACYL 1 A 1175 300 1.71616 0.059189 59.3459 0.928971 10.41 9.0502 80.5398 0 0.03798 0.118331 

50381 ITACYL 1 A 1500 300 2.06676 0.052651 122.454 0.439208 4.87829 9.39541 85.7263 0 0.098449 0.105588 

50382 ITACYL 1 A 1500 300 2.08554 0.078683 49.8018 0.528646 9.82621 19.19229 70.9815 0 0.082732 0.165878 

50383 ITACYL 1 A 1300 300 1.66881 0.059076 87.3515 1.099169 5.92604 11.92736 82.1466 0 0.027277 0.123168 

50384 ITACYL 1 A 1200 300 1.81526 0.089567 44.3554 1.291645 11.7564 21.6284 66.6152 0 0.01876 0.16835 

50385 ITACYL 1 A 300 300 1.83 0.112782 43.2781 1.860465 9.10101 33.01439 57.8846 0 0.006206 0.180715 

50386 ITACYL 1 A 1069 300 1.78585 0.072214 112.382 1.607616 4.20237 16.65213 79.1455 0 0.010147 0.144421 

50387 ITACYL 1 A 1167 300 2.01583 0.059945 172.317 0.785157 0.022431 14.34597 85.6316 0 0.050237 0.119737 

50388 ITACYL 1 A 1009 300 1.52705 0.061804 50.3633 2.490884 5.916409 48.01823 46.06536 38.13894 0.001821 0.169272 

50389 ITACYL 1 A 300 300 1.77932 0.073235 135.773 1.214849 1.90255 19.16105 78.9364 0 0.021782 0.1524 

50390 ITACYL 1 A 300 300 1.435 0.094733 93.7001 2.151163 3.96642 26.96038 69.0732 0 0.003526 0.179275 

50391 ITACYL 1 A 1300 300 1.4338 0.096537 18.5822 2.869244 20.9144 16.3906 62.695 0 0.000873 0.150401 

50392 ITACYL 1 A 600 300 1.40568 0.09933 14.2442 3.18707 23.1928 16.493 60.3142 0 0.00047 0.148605 

50393 ITACYL 1 A 1053 300 1.31885 0.097385 16.6293 2.703372 21.6813 17.1122 61.2065 0 0.001205 0.151073 

50394 ITACYL 1 A 1140 300 1.49731 0.082077 21.3294 1.467715 20.6386 10.7274 68.634 0 0.01332 0.136712 

50395 ITACYL 1 A 300 300 1.01312 0.092788 15.86 5.571558 22.0084 14.9888 63.0028 0 4.55E-06 0.146657 

50396 ITACYL 1 A 1340 300 1.45442 0.078587 13.4742 1.1825 24.0325 5.6271 70.3404 0 0.023196 0.113578 
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50397 ITACYL 1 A 1143 300 1.13758 0.095034 8.65149 2.273413 26.8214 11.31 61.8686 0 0.00278 0.133996 

50398 ITACYL 1 A 1248 300 1.30568 0.093153 11.2789 2.035163 24.8456 12.2502 62.9042 0 0.004418 0.138142 

50399 ITACYL 1 A 1250 300 1.43508 0.098365 10.3558 2.094041 25.4831 14.3192 60.1977 0 0.00394 0.142479 

50400 ITACYL 1 A 1200 300 1.86255 0.078844 141.299 1.068442 0.40785 25.65715 73.935 0 0.028957 0.177595 

50401 ITACYL 1 A 300 300 1.88935 0.096302 102.678 1.198703 2.76224 29.86016 67.3776 0 0.022477 0.186432 

50402 ITACYL 1 A 300 300 1.76483 0.0835 95.9948 1.174174 4.86846 22.45734 72.6742 0 0.023575 0.171434 

50403 ITACYL 1 A 300 300 1.50887 0.091577 14.2008 1.47361 22.0606 14.7361 63.2033 0 0.013169 0.147091 

50404 ITACYL 1 A 1273 300 1.51226 0.09166 11.1563 0.738209 24.5178 12.6276 62.8546 0 0.055039 0.142351 

50405 ITACYL 1 A 300 300 1.23146 10.0615 21.7141 1.789177 19.8639 18.2182 61.9179 0 0.007129 0.154555 

50406 ITACYL 1 A 300 300 1.32589 9.23517 27.8516 3.287657 17.7422 15.3173 66.9405 0 0.000387 0.150342 
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Annex 9. Simulation details of SWAT model set-up and parameterization. 

General details  

Simulation length [years] 11 

Warm Up [years] 1 

Hydrological response Units  << HRUs >> 1000 

Sub-basins 121 

Precipitation method Measured + TPM 

Watershed area [km2] 7,850.4 

  

Hydrology (water balance percent)  

Stream flow/precipitation 15% 

Base flow/total flow 74% 

Surface run-off/total flow 26% 

Percolation/precipitation 9% 

Deep recharge/precipitation 0.45% 

ET/precipitation 80% 

  

Hydrological parameters (all units in mm)  

Average curve number 51.57 

ET and transpiration 358.1 

Precipitation 447.5 

Surface run-off 17.66 

Lateral  flow 28.81 

Return flow 22.35 

Percolation to shallow aquifer 39.97 

Recharge to deep aquifer 2 

Revaporation from shallow aquifer 24.96 
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Annex 10. Yearly average water associated processes to the land use.  

LULC: Land Use Land Change, CN: Curve number, AWC: Available water content, USLE_LS: 

Universal soil loss equation value as combined slope length factor (L) and slope steepness 

factor (S), IRR: irrigation amount, PREC: precipitation, SURQ: Surface runoff to streams, 

GWQ: groundwater flow and ET: evapotranspiration. 

LULC Area (Km
2
) CN AWC (mm) USLE_LS IRR (mm) PREC (mm) SURQ (mm) GWQ (mm) ET (mm) 

AGRC 39.12 64.07 328.55 0.34 0 391.83 3.22 8.64 350.19 

AGRL 3.05 67 365.09 0.3 0 420.5 0.9 2.12 378.08 

ALFA 0.47 35 365.09 0.17 0 385.62 0 0.14 395.64 

BARL 1,783.49 64.56 273.19 0.65 0 437.04 3.33 53.23 348.66 

BERM 647.72 96.79 275.85 0.84 0 444.74 202.26 4.1 237.06 

FRSD 37.28 45 251.65 1.43 0 476.55 0.03 49.24 418.51 

FRSE 2,650.97 35.35 246.29 1.2 0 445.12 0.03 56.77 368.66 

HAY 11.12 35 250.98 1.48 0 482.67 0 62.36 403.6 

HORT 42.57 67 258.03 0.21 1.93 437.86 1.61 19.87 398.03 

POTA 5.56 67 282.08 0.2 16.63 408.04 4.15 14.37 391.14 

RNGE 486.6 49.5 244.74 2.27 0 477.79 0.16 76.36 387.46 

SGBT 3.57 67 328.3 0.21 6.83 372.37 2.12 0.58 365.58 

SUNF 143.09 67.79 259.83 0.53 0 443.16 1.9 25.15 396.94 

SWRN 1,517.10 40.26 277.17 2.05 0 455.18 0.04 48.33 390.69 

WWHT 478.17 63.13 251.91 0.66 0 452.89 2.03 74.57 344.33 

 


