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RESUMEN 

Los pastos son ecosistemas complejos con dinámicas espaciales y temporales no 

lineales. Sin embargo, sus dinámicas temporales se han empezado solo a 

investigar más recientemente y todavía no se conocen completamente. Los pastos 

cubren un 30-40% de la superficie terrestre de la Tierra, y su degradación, 

causada por el incremento del mal uso de estos ecosistemas, es una preocupación 

a nivel global, afectando al 73% de los pastos terrestres. La teledetección y 

métodos de monitoreo con satélites son comúnmente usados para el estudio en 

ecología y agricultura. Entre los diferentes índices satélites, el Índice de 

Vegetación de Diferencia Normalizada (NDVI, por sus siglas en inglés) es uno de 

los más usados como índice de vegetación por ecólogos. El NDVI muestra una 

buena correlación con la biomasa de diferentes tipos de vegetaciones climas 

áridos y semiáridos. Las anomalías del NDVI (NDVIa y ZNDVI) son otros índices 

que han demostrado su utilidad para la identificación de sequías y estrés hídrico 

en vegetación, por ello tiene gran potencial para el estudio de ecosistemas áridos 

y semiáridos.  

Dado el incremento de la longitud de las series temporales disponibles a través 

de la teledetección, en la actualidad se están utilizando y desarrollando 

herramientas relacionadas con la complejidad para el estudio de las relaciones 

temporales entre series de teledetección y sus interacciones con otros parámetros 

físicos como la temperatura y la precipitación, dos de los variables climáticas más 

influyentes en el crecimiento de la vegetación. Los fractales son una herramienta 

bien establecidas en los estudios de complejidad. Esta herramienta permite 

describir las relaciones escalares que se encuentran en la naturaleza y estas se 

pueden, a su vez relacionarse y ser entendidas en términos de principios físicos 

y biológicos. Por ejemplo, la persistencia de una serie temporal (la probabilidad 

de que la serie mantenga o no su tendencia actual) puede ser relacionada con el 
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manejo de vegetación, como el pastoreo o tratamientos forestales, así como con 

diferentes tipos de vegetaciones.  

El objetivo principal es el mejor entendimiento de las relaciones entre diferentes 

variables físicas en pastos áridos como un sistema complejo, dinámico y agrícola; 

así como el estudio de la naturaleza fractal de sus series temporales de índices de 

vegetación. Para ello se ha dividido en cuatro objetivos específicos. El primer 

objetivo es analizar la respuesta temporal del NDVI frente a la temperatura y la 

precipitación en las áreas seleccionadas. Análisis de correlación y regresión 

fueron utilizadas en diferentes fases o momentos del año, ajustando los límites 

de esas fases a cambios fenológicos década área. Los resultados de esta 

investigación muestran que la relación entre el NDVI con las variables 

meteorológicas cambiaba dependiendo de las fases seleccionadas. Ya que los 

cambios en dinámicas de la vegetación no siempre coinciden con los cambios de 

las estaciones, diferentes fases temporales específicas a cada región deben ser 

propuestas y optimizadas para estudiar las respuestas temporales del NDVI. 

El segundo objetivo se centra en el estudio de la relación entre el índice de 

contenido hídrico del suelo y el NDVI, y analizar si es factible utilizar la serie de 

anomalía de ambos índices para proponer un índice de alarma de sequía. Para 

ello, se calculó las anomalías y se analizó la probabilidad de coincidencia de 

anomalías negativas teniendo en cuenta el posible retraso entre las dos series de 

anomalías. Los resultados muestran que, para ciertos periodos del año, el índice 

de anomalía del contenido hídrico del suelo tiene una alta probabilidad de 

predecir con antelación las anomalías negativas del NDVI.  

El tercer objetivo es analizar la estructura de memoria de las series temporales de 

vegetación áridas de las áreas seleccionadas, así como comparar diferentes 

métodos para su estudio.  La estructura de memoria está relacionada con la 

persistencia de la serie y nos permite entender mejor los cambios de tendencia de 

la serie. Adicionalmente se ha estudiado la multifractalidad de las áreas de 
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estudio.  Se analizaron tres métodos fractales y multifractales (rango reescalado, 

función de estructura generalizado y análisis multifractal de fluctuación sin 

tendencia). Estos resultados muestran la importancia de eliminar la tendencia de 

las series temporales (cuando está presente) para el estudio multifractal. 

Por último, el cuarto objetivo es estudiar si es factible agrupar áreas de pastos 

áridos con diferentes tipos de vegetación usando los patrones anuales y la 

persistencia de sus series de vegetación. Se han comparado dos métodos para 

calcular el exponente de Hurst (rango reescalado y análisis de fluctuación sin 

tendencia) y dos métodos de agrupamiento (K-means y random forest no 

supervisado). Los resultados muestran que el uso del índice de Hurst usando 

análisis de fluctuación sin tendencia y el random forest no supervisado mejoró la 

clasificación de zonas de pastos. Estos pastos presentan un gran rango de 

persistencia, especialmente visible en las zonas arbustivas con diferentes estados 

de la sucesión de vegetación (desde arbustos rodeados de zonas herbáceas a 

arbustos con árboles dispersos). El uso de la persistencia permitió mejorar el 

análisis de agrupamiento y esta debería ser tenida en cuenta cuando se trabaja y 

estudia zonas de pastos.  

Esta tesis ha demostrado el potencial del análisis multifractal para ayudar a 

caracterizar tipos de pastos áridos y sus tendencias temporales para mejorar 

nuestro entendimiento sobre la complejidad de los pastos.  Especialmente la 

persistencia o antipersistencia de las series temporales de vegetación junto con el 

estudio de otras variables físicas, como el contenido hídrico del suelo, puede 

mejorar la gestión de pastos y se recomienda tenerlas en consideración como 

métricas de complejidad temporal.  
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SUMMARY 

Rangelands are complex ecosystems with non-linear dynamics in space and time, 

however, their temporal dynamics have only recently started to be studied and 

they are not fully understood. Rangelands comprise 30-40% of the Earth´s 

landmass and their degradation caused by increasing misuse remains a global 

concern, affecting 73 % of all rangelands. Remote sensing and satellite monitoring 

methods are commonly used to study ecology and agriculture. Among different 

satellite indices, the Normalized Difference Vegetation Index (NDVI) is the most 

widely used vegetation index by rangeland ecologists. The NDVI reveals a good 

correlation with the biomass of different vegetation types in arid and semi-arid 

areas. NDVI anomalies (NDVIa and ZNDVI) are other indexes proven useful for 

identifying drought and water stress on vegetation; therefore, it is suited to study 

arid and semi-arid ecosystems 

Given the increasing lengths of temporal series from remote sensing, complexity 

tools are being used and developed to study the temporal relationships among 

remote sensing series and their interaction with other physical parameters such 

as temperature and precipitation. Fractals are a well-established tool to measure 

mathematical properties of both temporally and spatially complex systems such 

as rangelands. Fractals can describe scaling relationships that are found in nature. 

For example, the persistence of time series (the probability of the series 

continuing or not its current trend). 

This work has the main goal of further understanding the relationships among 

different physical variables in arid rangelands as a complex agricultural 

dynamical system, and the fractal nature of vegetation index time series. And it 

is divided into four main specific objectives.  

The first objective was to reveal the temporal response of NDVI to temperature 

and precipitation in our target areas. Correlation and regression analysis were 

studied at different phases throughout the year adjusting the limits of these 
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phases to phenological changes to the vegetation of each area. Finally, the areas 

were compared using the aridity index. The results revealed that the relationship 

between NDVI and meteorological variables shifted when the phases of the year 

changed.  The vegetation dynamics in arid areas do not always match the seasons 

and specific phases should be delimited and optimized to study the NDVI 

temporal responses.  

The second goal was to study the relationship between the soil water content 

index and the NDVI and assess the feasibility of their anomaly series as a drought 

warning index.  In this section, we calculated their anomaly and study the 

probability of coincidence of their negative anomalies with lags between 

anomaly indexes.  The results show that for particular periods of the year, the 

anomaly of the water content index has a strong probability to inform in advance 

where the negative anomaly of NDVI is going to decrease.  

The third goal is to analyse the memory structure of arid vegetation time series, 

comparing different methods. The memory structure is related to the persistence 

of a series. Additionally, we studied the multifractality of the target areas. For 

this section, we analyse three fractal or multifractal methods and compared their 

results (rescale range, generalized structure function and multifractal detrended 

fluctuation analysis). These results show the relevance of detrending the time 

series when the series presents an increasing or decreasing trend to analyse their 

multifractal character.  

Finally, the fourth objective is to study the feasibility of clustering rangeland 

areas with different vegetation types based on the annual patterns and the 

persistence of their vegetation series. We compared two methods to calculate the 

persistence using the Hurst exponent (rescale range and detrended fluctuation 

analysis) and two different methods of unsupervised classification or clustering 

(K-means and Unsupervised Random Forest). The results showed the use of the 

Hurst exponent from detrended fluctuation analyses in unsupervised random 
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forest improved the clustering of rangeland areas. The rangelands presented a 

large diversity of persistence, especially reflected as a continuum for shrublands 

(with different types of vegetation mixes: sometimes associated mainly with 

grasses and sometimes with trees, in different proportions). Persistence 

improved the clustering analysis and it should be taken into consideration when 

working with rangeland.  

In summary, this thesis has shown the potential of multifractal analysis to help 

characterize arid rangeland types and time trends to further understand the 

insights into rangelands' complexity. Especially the persistence character of 

rangeland vegetation time series with the study of meteorological and other 

physical attributes, such as water soil content, could aid in rangeland 

management and it is recommended to be taken under consideration as temporal 

complexity metrics.  
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1. INTRODUCTION 

1.1. Rangelands  

Rangelands were described in 1923 as grazing lands that do not favour farmlands 

due to their climatic conditions (Sampson, 1923). However, the rangeland 

concept and its management have shifted throughout the decades, as the 

conceptual models used to understand these types of habitats have changed. In 

1917, the succession theory (theory describing the process of change in species 

structure over time) was included and heavily influenced rangeland 

management. In 1975, Heady expanded the definition of rangeland management 

to “optimize returns from rangelands in those combinations most desired and 

suitable to society” (Heady et al., 1975). These differences in approaches of 

rangeland management were related to the two models that were used up to this 

moment, steady-state management was the first use linked to succession theory 

and equilibrium ecology. Whereas ecosystem management, based on non-

equilibrium ecology and state and transition models was developed in the 1970s 

and widely adopted in the 1990s, increasing the functions of rangelands.  A more 

recent management called the resilience-based was applied to provide more 

effective manners to manage this type of natural resource. This resilience theory 

represents equilibrial and non-equilibrial dynamics co-occurring at different 

levels, such as equilibrium vegetations at multiple states. This management 

model was developed based on resilience ecology and the inclusion of social 

sciences as part of rangeland sciences to study social-ecological systems (Briske, 

2017).  

Rangelands are currently defined as ecosystems supporting native or naturalized 

vegetation characterized as grasslands, shrub-steppe, shrublands, savannas, and 

deserts that are managed as adaptive social-ecological systems to provide 

multiple ecosystem services to benefit human well-being (Briske, 2017). They 

represent almost 33% of ice-free land globally. The vast majority of rangelands 



Introduction 

2 
 

are drylands (dry sub-humid, semi-arid, arid and hyper-arid lands), although 

some rangelands exist in the tundra and high elevation and latitude grasslands. 

This biome is associated with low available soil water due to low precipitation 

and high evapotranspiration. Rangelands provide great ecosystem values 

including biodiversity, carbon sequestration and cultural values. They often 

provide habitats for human settlements (Ellis and Ramankutty, 2008; Zerga, 

2015). 

Scarce precipitation and variable temperatures lead to high spatial and temporal 

heterogeneity. The ability of rangelands to regulate and provide water is strongly 

dependent on 1) water infiltration in the soil, 2) how this is accumulated in the 

root zone or as groundwater and 3) how this is absorbed by the plants or lost 

through evapotranspiration (Briske, 2017; Vetter, 2005). Vegetation, soil 

properties and water redistribution present non-linear patterns conforming to a 

heavily interconnected landscape, where each component can trigger cascading 

feedback that may heavily change these landscapes (Saco et al., 2018). 

As socio-ecological systems in addition to biogeophysical components, social 

actors must be studied to fully understand rangeland dynamics. Limited 

resource availability makes these lands highly vulnerable to ecological and social 

disruption. Unfortunately, these habitats suffer severe degradation causing the 

disappearance of 5–10 million hectares of agricultural land every year (Ellis and 

Ramankutty, 2008; Zerga, 2015). Rangelands are spatially and temporally 

heterogeneous making their management a complex process that requires 

bridging the gap between theory and reality. For this purpose, parallel 

development of novel model productions and statistical analyses of complex 

spatiotemporal data to link ecological and social phenomena to their underlying 

mechanism are essential.  
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1.1.1. Rangelands as a complex system 

 

Ecosystems are complex dynamical systems composed of different communities 

driven by various processes operating at different spatial and temporal scales. 

This means they are more than the sum of their parts, as the system is providing 

emergent properties (properties that appear from the group and you could not 

find in the individuals), and the response of the system to a different event may 

shift spatially and temporally (Cornell and Karlson, 1997; Muller, 2000; Ricklefs 

and Schluter, 1993). Among these emergent properties, ecosystems show a self-

organising capacity, which is a non-linear dynamic process that leads to an 

increase in complexity based on cooperative interactions of the parts (Jorgensen 

and Fath, 2014; Muller, 2000; Naeem and Li, 1997; Tilman et al., 2001, 1996; Wolf 

and Holvoet, 2004). Self-organization can make the ecosystem more robust and 

resilient (Holling, 1973; Ludwig et al., 2001; Zhao et al., 2019). Therefore, non-

linear techniques can be used to understand plant community spatio-temporal 

dynamics (Rand, 1994; Stone and Ezrati, 1996; Watt, 1947). The mathematical 

properties of both temporally and spatially complex systems are often fractal 

(Mandelbrot, 1983).  

Rangelands are ecosystems coupled with a social system, making them complex 

adaptive systems (complex systems that present a dynamic network of 

interaction). These systems include not only biophysical dynamics, such as prey 

and predator dynamics but also social aspects such as selling or restocking 

livestock (Gross et al., 2006). To support their management new, quantitative 

models are needed at different spatial scales (Lempert, 2002; Levin, 1998). 

Complex problems can arise when considering different temporal and/or spatial 

scales. For example, managing rangeland productivity in the short term while 

avoiding long-term decline, with spatial heterogeneity due to woody plant 

encroachment (Eldridge et al., 2011; Janssen et al., 2000).  
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Many of the mechanisms involved in rangelands are clear, such as 

thermodynamics, biological inheritance or natural selection. But it is far from 

clear how these fundamental processes, interact and give rise to ecological 

systems. Despite being recognized for decades or centuries, their explanations 

remain elusive in terms of physical or biological principles. One restricted class 

of ecological phenomena can be characterized mathematically: scaling 

relationships that are self-similar or fractal-like over a range of spatial and 

temporal scales (Brown et al., 2002). Power laws describe emergent patterns of 

nature that can be understood in terms of basic physical and biological principles 

(Brown et al., 2002; Feder, 2013; Mandelbrot, 1983). 

Research is often seen as a tool for solving management problems. However, 

linkages between applied and theoretical science can be weak. Research efforts 

should be focused on testable ecological theory to provide a framework for 

understanding root causes for complex system dynamics and foster incremental 

learning (Boyd and Svejcar, 2009). In this context, geospatial data is one of the 

key aspects to approaching ecological and general resilience to prioritize 

management action and develop appropriate strategies for the present and future 

(Chambers et al., 2019). Effective management requires the understanding of an 

ecosystem´s responses to stressors, disturbances and management actions at 

different levels (spatially and temporally) (Boyd and Svejcar, 2009). 

 

1.1.2. Arid and semiarid rangelands  

 

Arid areas have primary productivity limited by water. They receive 100-300 mm 

of mean annual precipitation. Semiarid areas receive a higher amount of 

precipitation 300-800 mm of mean annual precipitation. In addition to low 

precipitations, these tend to be erratic. Furthermore, high temperatures and low 

precipitations tend to co-occur during the summer months (Sjoholm et al., 1989).  

As a result of these conditions productivity per area is typically low and highly 
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variable from year to year, especially in arid rangelands (Fern et al., 2018; Vetter, 

2005). 

Arid and semiarid rangelands have progressively lost productivity and 

biodiversity over the past century (Breman and de Wit, 1983; Dean and 

Macdonald, 1994; Downing, 1978; Friedel et al., 1990; le Houerou, 2012; Milton et 

al., 1994; Schlesinger et al., 1990; Talbot, 1961; West, 1993). This was attributed to 

the overuse of rangelands by domestic herbivores, as arid and semiarid 

rangeland appear to be more sensitive to domestic livestock than mesic 

rangelands (Mack and Thompson, 1982; Milton et al., 1994).  However, a debate 

regarding this criticism of grazing management was lately raised around the 

1990s, and a new rangeland ecology was proposed.  This new debate opposed 

the previous vision that stressed the importance of biotic feedback between 

herbivores and their resource. On the other hand, the new rangeland ecology 

related to non-equilibrium rangelands sees the abiotic conditions as the primary 

drivers of vegetation considering the spatial heterogeneity and climatic 

variability of semi-arid and arid rangelands. It is now widely accepted that 

equilibrium and non-equilibrium dynamics can be found in rangelands (Briske, 

2017; Briske et al., 2003; Vetter, 2005).  

Management under incomplete or not applicable ecological models can lead to 

altering rangeland dynamics and should be carefully thought in policy-making 

and management, especially in arid rangelands. Overgrazing leads to vegetation 

changes such as the replacement of palatable grasses by less palatable plants, the 

replacement of perennials by annuals, reduced basal cover, possible soil erosion, 

etc. These changes can be reversible when caught on time but they can also be 

irreversible after trespassing a threshold.  Differences are found between arid and 

semiarid rangelands compared to mesic rangelands. In arid and semi-arid areas 

where rainfall coefficients of variability are over 30%, vegetation cover, 

composition and productivity are determined by rainfall, while grazing intensity 
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had a negligible, therefore non-equilibrium dynamics predominate in arid and 

semiarid rangelands. This makes rangeland's condition difficult to monitor and 

degradation assessment should be carefully considered to study grazing 

pressures. Especially in arid years, grazing pressures can lead to irreversible 

changes in rangeland dynamics (Milton et al., 1994; Pickup et al., 1998; Vetter, 

2005).  

 

1.2. Vegetation indices 

 

The tailored monitoring of vegetation to inform sustainable management of these 

areas is a key aspect of stopping its degradation (Ellis and Ramankutty, 2008; 

Pickup et al., 1998; Zerga, 2015). Remote sensing and satellite monitoring 

methods are commonly used to study ecology and agriculture (Curran et al., 

1992; Fern et al., 2018; Henebry, 1993; Wabnitz et al., 2008). New tools and metrics 

use complexity to understand and predict natural systems’ behaviour and 

improve monitoring and management programs. In the past decades, advances 

suggest that complex-systems science can develop predicting frameworks with 

metrics that explain spatiotemporal dynamics’ underlying causes (Guichard and 

Gouhier, 2014).  

Vegetation mapping is typically static. However, vegetation is highly dynamic 

and understanding when changes happened helps improve management. For 

this reason, time series through remote sensing can provide a look into the past 

to aid our future. Studying vegetation cover has been widely recognised as one 

of the best indicators to determine land conditions (Bastin et al., 1999; Booth and 

Tueller, 2003; Wallace et al., 2006). Several vegetation indices have been used 

more commonly to assess rangeland's condition and productivity (Table 1.1) 

(Escribano Rodríguez et al., 2014; Jafari et al., 2007; Richardson and Everitt, 1992).  

Each index has its advantages and disadvantages and among these the 
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normalized difference vegetation index (NDVI) is by far the most commonly 

used by rangeland ecologists (Yagci et al., 2014). 

Table 1.1. Eight of the most common vegetation indices used in rangelands and 

ecology. 

 

NDVI has shown robust results to identify damaged vegetation, and therefore it 

is especially suited to analyse the status of semiarid and arid areas (Amri et al., 

2011). On the other hand, arid and semiarid rangelands have highly variable 

rainfall, productivity, and vegetation cover. These are greatly affected by 

seasonal history.  The lack of vegetation and the presence of background soil 

signifies a problem in remote sensing as it affects vegetation indices (Wallace et 

al., 2006). Therefore, depending on the goal of the study, such as differentiating 

soil from biomass or differentiating the presence of perennial or annual plants, 

soil-adjusted VI or other indices may be better suited. The selection of best fit 

should be made on a case basis, especially in the most extreme areas  (Almeida-

Ñauñay et al., 2021; Fern et al., 2018). Nevertheless, NDVI has been proven well 

Indices Source Formula 

Ratio VI Birth & McVey (1968) 𝑅𝑉𝐼 =
NIR

RED
 

Green Ratio VI 
Richardson & Everitt 

(1992) 
𝐺𝑅𝑉𝐼 =

NIR

GREEN
 

Normalized Difference VI Rouse et al. (1973) 𝑁𝐷𝑉𝐼 =
NIR − RED

NIR + RED
 

Soil Adjusted VI Huete (1988) 𝑆𝐴𝑉𝐼 =
NIR − RED

NIR + RED + 0.5
 (1.5) 

Modified Soil Adjusted VI Qi et al. (1994) 𝑀𝑆𝐴𝑉𝐼 =
NIR − RED

NIR + RED + LM
 (1 + LM) 

Transformed Soil Adjusted VI Baret & Guyot (1991) TSAVI =
a(NIR − aRED − b)

RED + aNIR − ab
 

Perpendicular VI Kauth et al. (1979) PVI =
NIR − aRED − b

√1 + 𝑎2
 

Enhanced VI Liu & Huete (2019) EVI =
g(NIR − RED)

NIR + C1 × RED − C2 × B + L
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suited to assess general cover monitoring, regardless of soil or vegetation 

variations (Al-Bakri and Suleiman, 2004; Klisch and Atzberger, 2016; Peters et al., 

2002; Ünal et al., 2014; Wallace et al., 2006; Yagci et al., 2014). 

 

1.3. NDVI relationship to meteorological variables 

 

Temperature and precipitation are mostly studied as drivers of NDVI (Al-Bakri 

and Suleiman, 2004; Ghebrezgabher et al., 2020; Hao et al., 2012; Ichii et al., 2002; 

Joiner et al., 2018; Liu et al., 2013; Martiny et al., 2006; Wang et al., 2003; Yue et 

al., 2007). However, the interactions among them and with other factors are still 

not fully comprehended (Piedallu et al., 2019). Temperature effects on NDVI are 

significant when water is available in the ecosystem; in these circumstances, 

precipitation plays a minor role. However, this relationship grows more assertive 

in arid regions, where water availability seems to be one of the main drivers of 

NDVI (Birtwistle et al., 2016; Vicente-Serrano et al., 2013; Zhang et al., 2018). 

Furthermore, some authors (Piao et al., 2014) suggest studying additional 

climatic factors further to understand thermal and hydric stress effects on NDVI 

patterns. Other climatic variables that have been reviewed are soil moisture, 

evapotranspiration, and land cover (Joiner et al., 2018; Wang et al., 2003; Yue et 

al., 2007). The relationships of NDVI with these climatic variables differ by season 

and vegetation type and biome. Another factor that makes it more difficult to 

disentangle the interactions is the effect of human activities on both NDVI and 

the ecosystem itself, especially when it comes to overexploitation such as 

overgrazing or water overuse (Zewdie et al., 2017). Therefore, it is essential to 

deeply understand NDVI and meteorological variables’ relationship, especially 

accounting for the differences in this relationship between seasons and across 

types of land management. This is particularly relevant for agrometeorological 

indices, often used in rangelands (Dhakar et al., 2013). 



Introduction 

9 
 

NDVI and its relationship with meteorological variables have reported different 

results depending on the analyzed spatial scale (Peng et al., 2017; Stefanov and 

Netzband, 2005; Tarnavsky et al., 2008). Additionally, human activities 

negatively correlated with NDVI at a medium spatial resolution while it exerted 

a positive correlation at a lower resolution. Therefore, considering different 

spatial scales to identify the causes of NDVI patterns remains a challenging task 

(Peng et al., 2017). 

The Aridity Index (AI) represents water availability, and different expressions 

have been developed (Nastos et al., 2013).  United Nations Environment 

Programme developed a modified and widely accepted ratio of annual 

precipitation to the annual potential evapotranspiration (Maestre et al., 2012; 

Middleton and Thomas, 1992). This index has been used to quantify droughts 

and estimates possible changes in climate regimes (Bannayan et al., 2010; Sepehr 

et al., 2007), manage afforestation and reforestation projects, and prioritize and 

assess future conservation efforts in rangelands (Girvetz et al., 2012; Zheng and 

Zhu, 2017). It has also been previously compared to vegetation indices such as 

NDVI (Costantini et al., 2009; Nyamtseren et al., 2018; Scordo et al., 2009). 

 

1.3.1. Temporal response to temperature and precipitation 

 

Variations in temperature and precipitation strongly influence NDVI, however, 

these interactions change over time. Precipitation’s link to NDVI will be much 

higher when water is not readily available in the ground, such as after a dry 

period, or when the temperature is not the limiting factor by stopping growth or 

evaporating water (cold and hot temperatures, respectively).  Several researchers 

have seen differences among seasons (Braswell et al., 1997; Cui and Shi, 2010; 

Gang and Congbin, 2000; Wang et al., 2003), however, the interaction among 

NDVI and temperature and precipitation also changed based on space. For 
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example, NDVI can positively or negatively be related to temperature (Cao et al., 

2011; Li & Shi, 2000; Zhao et al., 2011).  

As these relationships change based on ecological zone, arid areas are shown to 

have precipitation as the most influencing variable in NDVI, as these rangelands 

are characterized by a ratio of mean annual precipitation and evapotranspiration 

between 0.02 and 0.5 for semiarid rangelands and 0.05 to 0.2 for arid rangelands 

(UNEP, 1992). This situation leads to an enhanced risk of land degradation 

caused by climate change. More intense rainfall events with no change in the total 

annual precipitation and temperatures are likely to intensify water stress and soil 

erosion (Fay et al., 2003; Hughes, 2003; Tietjen and Jeltsch, 2007).  

 

1.3.2. Relationship of NDVI and water soil content 

Precipitation and temperature directly influence water balance, causing changes 

in soil moisture regime which, in turn, influences plant growth. Thus, soil 

moisture is widely recognized as a key parameter that links precipitation, 

temperature, evapotranspiration and NDVI, though temperature also affects 

plant phenology and growth directly. Farrar et al. (1994) studied NDVI, rainfall 

and model-calculated soil moisture in Botswana. Their results showed that while 

the correlation between NDVI and precipitation is highest for a multi-month 

average, NDVI is controlled by soil moisture in the concurrent month.  Other 

research focused more on grassland and woodlands showed the link between 

NDVI and water soil content with different lags (Adegoke & Carleton, 2002; Liu 

& Kogan, 1996).  

When studying water soil content, it must be noted the difference between 

surface soil layers and root zone soil. Even though, a strong correlation has been 

shown between these layers (Albergel et al., 2008; Babaeian et al., 2018; Hirschi 

et al., 2014; Sadeghi et al., 2017). Different responses of NDVI to water soil content 

are found among vegetation and especially between humid and arid or semiarid 
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areas. This is due to the disparities among these areas in root zone soils and 

surface soil layers (Adegoke and Carleton, 2002; Liu and Kogan, 1996; Wang et 

al., 2007).  NDVI has been shown to have strong links with root zone soil moisture 

and surface soil moisture in grassland and shrubland in semi-arid regions (Guan 

et al., 2020; Schnur et al., 2010; Wang et al., 2007) 

 

1.4. Drought types. Warning indices. 

Droughts are often considered into four major types: meteorological, 

agricultural, hydrological and socioeconomic. Meteorological drought results 

from a reduction of precipitation. Agricultural drought when plants do not have 

enough available water to meet their requirements, therefore this type of drought 

varies based on the type of vegetation. Since this is vegetation specific some soil 

water deficit may affect differently dissimilar vegetation and there tends to be a 

lag between soil water deficit and how this is reflected in the vegetation with 

shorter or wider periods. Hydrological droughts are when the water moving 

through the ground is significantly reduced; and finally, socioeconomic drought 

is when a drought affects the supply of goods and services of a community. These 

types of droughts are sequential in time and increasing complexity in their 

impacts and conflicts (Allaby, 2014; American Meteorological Society, 2004, 1997; 

Wilhite and Buchanan-Smith, 2005).   

Remote sensing observation can be used to monitor drought-related variables 

and assess their effects and impacts from an ecosystem perspective. Precipitation 

has been studied with several indices (Kim et al., 2009; Mahmoudi et al., 2019), 

such as the Standardized Precipitation Index (SPI; McKee et al., 1993), Effective 

Drought Index (EDI;  Byun and Wilhite, 1999), or Percent Normal Precipitation 

Index (PNPI; Willeke et al., 1994). To estimate soil moisture several indices were 

also developed (AghaKouchak et al., 2015; Wang and Qu, 2009) such as the 

Standardized Soil Moisture Index (SSI; Hao and AghaKouchak, 2013), the soil 
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moisture percentile (SMP; Sheffield et al., 2004; Wang and Qu, 2009), and 

OPTRAM (OPtical TRapezoid Model; Babaeian et al., 2018; Sadeghi et al., 2017). 

And most common vegetation indices to assess vegetation status have already 

been explained in a previous section. 

As the drought types are sequential, an alarm index can be developed before 

more damage is caused. Drought indicators represent different stages of the 

hydrological cycle such as precipitation or soil moisture and later impacts can be 

perceived in vegetation water stress. How each stage behaves depends on the 

particular vegetation or ecosystem. Droughts cannot be avoided but their 

impacts can be reduced, by preparing for them. Different combined indicators 

present indices with warning thresholds (Hao and AghaKouchak, 2013; 

Sepulcre-Canto et al., 2012; Shofiyati et al., 2021; Skees et al., 2001; Wilhite, 2006). 

Early warning indices can provide a drought probability that can be used as a 

management tool. A proactive approach can then be taken in drought risk 

management using different sets of risk reduction instruments at different levels 

such as farm or government levels. These instruments include insurance, 

irrigation schemes or budget releases. Despite presenting different challenges 

early warning systems have already been used in the past (Canedo Rosso et al., 

2018; Desai et al., 2015) 

 

1.5. Multifractal analysis in vegetation dynamics 

As mentioned before fractal or multifractal (a generalization of the scaling 

process of fractals) can be used to describe and understand vegetation. Fractal 

was coined in 1977 and simply put it is a geometry that repeats itself at different 

scales, spatially or over time. Or otherwise stated, it has self-similarity through 

power law relation (Mandelbrot, 1977). The more fractal a figure or series is the 

more complex it is as it changes more when the scale changes. In fractal geometry, 

fractal dimension can be used to measure it, providing a statistical index of 
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complexity based on fractal patterns. Fractal time series show power law 

properties related to the concepts of memory and persistence. Hurst exponent is 

widely used in fractal time series as it measures the long-term memory of time 

series (Hurst, 1951). Hurst exponent characterizes the roughness of the profile as 

will be further discussed in section 4.4 of materials and methods.  

Among fractals, we can find monofractals, such as the Brownian motion or white 

noise, and multifractals, very common in nature. Monofractal only bear one 

scaling factor, therefore they can be described by one fractal characteristic such 

as fractal dimension or Hurst exponent. On the other hand, multifractals possess 

at least two scaling factors and cannot be described by a single exponent and a 

continuous spectrum of exponents is required. Fractals have often been used in 

ecology and agronomy (Anderson et al., 1997; Frontier, 1987; Halley et al., 2004; 

Mandelbrot, 1983). However, only recently fractals have been used in vegetation 

time series as satellite series of larger resolutions have provided large enough 

time series, and this discipline keeps currently changing as new resolutions and 

methods come to light.  

Most papers studying vegetation series have focused on monofractal techniques 

calculating the Hurst index (HI), a persistence test, usually estimated by the 

Rescaled Range (R/S) method (Liu et al., 2017, 2018; Wang et al., 2005). Li et al. 

(Li et al., 2017) began to calculate the HI using the Detrended Fluctuation 

Analysis (DFA) as it is a more robust method to detect the scaling behaviour in 

time series as it can be used in non-stationary series. Many of these works focus 

on studying how different HI values are related to different vegetation dynamics 

and can lead to a further understanding of the interaction between their different 

components (Liang et al., 2015). 

Besides HI, several multifractal analyses are giving a more in-depth comparison 

of the time series. For example, Generalised Structure Function (GSF) (Frisch, U. 

and Parisi, 1985), and Multifractal Detrended Fluctuation Analysis (MF-DFA) 
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(Kantelhardt et al., 2002), focus on measuring variations of the moments of the 

absolute difference of their values at different scales. GSF has been used to study 

vegetation (Lovejoy et al., 2008) and other geophysical data (Lovejoy et al., 2001). 

More recently, MF-DFA has been used to study the long-term ecosystem 

dynamics at a large scale (Baranowski et al., 2015; Hou et al., 2018; Igbawua et al., 

2019; Mali, 2015)  and compare the dynamics of affected and unaffected areas by 

fire (Ba et al., 2020). MF-DFA allows studying multiscaling on vegetation and 

detecting whether it is related to long-term correlations or a broad probability 

density function. Studying the difference in multiscaling between different areas 

can further support our understanding of vegetation dynamics and its interaction 

with other components (Katul et al., 2001). Interpretations of monofractal and 

multifractal analyses of landscapes have been used to inform policymakers. 

Different studies have been conducted to predict vegetation dynamics (Miao et 

al., 2015; Tong et al., 2018), while others have developed tools to evaluate current 

management practices (Igbawua et al., 2019; Kalisa et al., 2021; Wang et al., 2020; 

Zhou et al., 2020). 
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1.6. GENERAL AND SPECIFIC GOALS 

Rangelands are complex adaptive systems, where in the past different 

management options have resulted in the degradation of the ecosystem due to a 

lack of understanding of their ecological relationships and interactions. The 

vegetation and meteorological time series have been demonstrated to have fractal 

properties as part of this complexity. The mathematical properties of their fractal 

nature can be used for research and management, as has been suggested by 

Igbawua et al. (2019) and Kalisa et al. (2021). 

The main goal of this thesis is to further understand the relationships among 

different variables (vegetation indices, temperature, precipitation and water soil 

content index) in arid rangelands as a complex agricultural dynamical system, 

and the fractal nature of vegetation indices time series.  

The main goal was divided into four main questions as written below: 

1. Which is the temporal response of NDVI to temperature and 

precipitation in arid areas and how does it change through the year?  

2. How does the soil water content index time series relate to the 

vegetation index throughout the year? Can we use the water content 

index as a warning index before vegetation damage? 

3. How is the memory structure of vegetation time series, do different 

methods provide distinct results? 

4. Is it feasible to use annual patterns and persistence to cluster 

rangelands with different vegetation types? 

The thesis structure has been established to address these goals and their specific 

chapters are stated below: 

- Chapter 3: Temporal response of NDVI to temperature and precipitation 

in arid rangelands 
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o The results obtained in the article: (Sanz et al., 2021a) 

- Chapter 4: Soil water content and vegetation. The temporal relationship 

between ZWCI and ZVCI 

o Part of an ongoing research (to expand target areas). 

- Chapter 5: multifractal character of NDVI and NDVIa 

o The results obtained in the article: (Sanz et al., 2021b) 

- Chapter 6: clustering arid rangelands based on NDVI annual patterns and 

their persistence 

o The results obtained in the article: (Sanz et al., 2022) 
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2. MATERIALS AND METHODS 

2.1. Temporal response of NDVI to temperature and precipitation 

2.1.1. NDVI and Meteorological Data Collection 

MOD09A1.006 and MOD09Q1.006 MODIS products were collected from 

AppEEARS (Team, 2020), downloading the RED (band 1) and NIR (band 2) 

values for the target areas. These products differ in spatial resolution:  

MOD09A1.006 has a 250 m spatial resolution (Medium Resolution, MR) and 

MOD09Q1.006 has a 500 m spatial resolution (Low Resolution, LR). Both of them 

have an 8-day temporal resolution from the beginning of 2000 to 2019, a total of 

20 years of data. R was used to calculate the NDVI for each pixel, using the 

following formula: 

𝑁𝐷𝑉𝐼 = 100 × 
NIR−RED

NIR + RED
     (1) 

Both spatial resolutions were used to study the temporal response of NDVI to 

temperature and precipitation and compared. However, only the MR was used 

for the rest of the thesis: (relationship of vegetation condition index (VCI) and 

water condition index (WCI) anomalies, the scaling properties of vegetation 

indices and clustering rangelands). However, to study the relationship of VCI 

and WCI anomalies and clustering rangelands the temporal resolution was 

transformed to 10 days and the series started on 2002 to 2019, to match the time 

series used in Spanish indexed agricultural insurance as the selection of the pixels 

was provided by them.  

The NDVI values were then checked for quality. If the data were not categorized 

as ideal quality, in the quality band from AppEEARS, this data was deleted; less 

than 0.01 % were deleted for all areas. The gaps were filled using running 

averages with a gap interval of seven dates. Then, the time series were smoothed 

using the Savitzky-Golay method (Savitzky and Golay, 1964), with a window size 

of 9 selected based on the best-fitted outputs.  
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Two different types of anomalies were calculated: the NDVI anomaly (NDVIa) 

following Anyamba and Tucker (2012): 

𝑁𝐷𝑉𝐼𝑎 = NDVI − μNDVI    (2) 

Where µNDVI is the average of all samples in all available years measured on the 

same calendar date.  

The NDVI anomaly (ZNDVI) was calculated by applying a z-score by date (Klisch 

and Atzberger, 2016): 

ZNDVI =  
NDVI− μNDVI

σNDVI
    (3) 

where we used µNDVI with the same definition and σNDVI, which corresponds to 

the standard deviation of all samples in all available years measured on the same 

calendar date.  

The seasonal variation is removed in both anomaly types. Additionally, in Z-

score when dividing by the standard deviation, if a trend was present in the time 

series, this one was removed.  Each anomaly is used for different purposes. ZNDVI 

was used to study the temporal responses of NDVI to temperature, precipitation 

and water soil content (WCI and VCI anomalies. On the other hand, the NDVIa 

was used to study the scaling properties and clustering rangelands. This last 

anomaly was used to remove fewer characteristic from the original series for the 

multifractal analyses.  

Daily meteorological data from the closest meteorological stations (Appendix 1) 

were also used (Ministerio de Agricultura, 2020; SIAM, 2020). Average 

temperature and accumulated precipitation were calculated every eight days to 

match the NDVI dates. To examine the variation of NDVI during the year, 

boxplots of NDVI and meteorological variables were plotted.  

Different phases were defined based on the NDVI pattern during the year as this 

region presents harshness and aridity. These phases (𝑖) were based on the trend 
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of NDVI values: increasing, decreasing, or constant. A Chow test (Chow, 1960) 

of NDVI and time was used to confirm whether NDVI phases presented 

structural differences at the selected breaking points. 

2.1.2. Correlations of NDVI with Meteorological Variables 

The NDVI data were based on eight-day compound images. The image was 

selected based on criteria such as clouds and solar zenith. To match this temporal 

resolution the daily meteorological data were transformed as follows. The 

temperature data was the average for every eight days. Precipitations were 

accumulated every eight days. For exploring the existence of temporal patterns, 

we focused on correlations without and with lags: 

Pearson’s correlation coefficient of the NDVI values with Temperature (Temp) 

and Precipitation (Pp) at different phases (𝑖) is: 

𝜌𝑁𝐷𝑉𝐼,𝑇𝑒𝑚𝑝,𝑖 =
𝑐𝑜𝑣(〈𝑁𝐷𝑉𝐼𝑖(𝑡)〉, 〈𝑇𝑒𝑚𝑝𝑖(𝑡)〉)

𝜎〈𝑁𝐷𝑉𝐼𝑖(𝑡)〉𝜎〈𝑇𝑒𝑚𝑝𝑖(𝑡)〉
 (4) 

𝜌𝑁𝐷𝑉𝐼,𝑃𝑝,𝑖 =
𝑐𝑜𝑣(〈𝑁𝐷𝑉𝐼𝑖(𝑡)〉, 〈𝑃𝑝𝑖(𝑡)〉)

𝜎〈𝑁𝐷𝑉𝐼𝑖(𝑡)〉𝜎〈𝑃𝑝𝑖(𝑡)〉
 (5) 

where 〈𝑉𝑖(𝑡)〉 is the average of the 18 years of the variable 𝑉 (𝑁𝐷𝑉𝐼, 𝑇𝑒𝑚𝑝 𝑜𝑟 𝑃𝑝) 

at time t belonging to phase 𝑖; 𝜎〈𝑉𝑖(𝑡)〉 is the standard deviation of the 〈𝑉𝑖(𝑡)〉. 

Pearson’s correlation coefficient of the NDVI series belonging to phase 𝑖, through 

the 18 years (𝑗), with each of the climatic variables (𝑇𝑒𝑚𝑝 and 𝑃𝑝) at different 

time lags (𝑠) is: 

𝜌𝑁𝐷𝑉𝐼,𝑇𝑒𝑚𝑝,𝑖(𝑠) =
𝑐𝑜𝑣(𝑁𝐷𝑉𝐼𝑖(𝑗, 𝑡), 𝑇𝑒𝑚𝑝(𝑗, 𝑡 − 𝑠))

𝜎𝑁𝐷𝑉𝐼𝑖(𝑗,𝑡)𝜎𝑇𝑒𝑚𝑝(𝑗,𝑡−𝑠)
 (6) 

𝜌𝑁𝐷𝑉𝐼,𝑃𝑝,𝑖(𝑠) =
𝑐𝑜𝑣(𝑁𝐷𝑉𝐼𝑖(𝑗, 𝑡), 𝑃𝑝(𝑗, 𝑡 − 𝑠))

𝜎𝑁𝐷𝑉𝐼𝑖(𝑗,𝑡)𝜎𝑃𝑝(𝑗,𝑡−𝑠)
 (7) 
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where 𝑁𝐷𝑉𝐼𝑖(𝑗, 𝑡) are the 𝑁𝐷𝑉𝐼 values at year 𝑗 and time 𝑡 that belong to phase 𝑖. 

The 𝑇𝑒𝑚𝑝(𝑗, 𝑡 − 𝑠) are the temperature values at year 𝑗 and delayed 𝑠 times the 

lag time, which is eight days. Analogously, 𝑃𝑝(𝑗, 𝑡 − 𝑠) can be defined. 

2.1.3. Aridity Index and NDVI 

The aridity index was calculated following (Middleton and Thomas, 1992), but 

instead of accumulating annually, we used the phases described by the NDVI 

patterns: 

𝐴𝐼𝑖 =  
𝑃𝑖

EToi
   (8) 

where 𝑃𝑖 is the summation of the accumulated precipitation of each phase for 

each year and was analogously done for the accumulated potential 

evapotranspiration (EToi,Jensen et al. , 1990) . Then, the average NDVI value for 

each phase was calculated. The aridity index and the average NDVI for each 

phase were plotted, in a cumulative plot, where each value was added to the sum 

of the previous values, starting at the first value of the time series. A linear 

regression was calculated to compare the four areas. A high slope would indicate 

an efficient use of its water resources. 

2.2. Soil water content and its relationship with the vegetation 

condition index     

2.2.1. Estimation of vegetation and soil indices 

 

NDVI with 10 days temporal resolution and 250 m spatial resolution was used to 

calculate another vegetation index especially used for drought detection, the 

Vegetation Condition Index (VCI, (Kogan, 1995). This index was calculated 

following equation 9 where NDVI is each value for each time series and NDVImin 

and NDVImax are respectively, their multiyear minimum and maximum for every 

ten days: 

𝑉𝐶𝐼 =
NDVI−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
   (9) 
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The dynamics of the VCI were analysed and compared to the surface soil 

moisture index. To estimate surface soil moisture, we used the OPtimized 

TRapezoid Model (OPTRAM, (Sadeghi et al., 2017)). This model requires the 

Shortwave Transformed Reflectance (STR) and the NDVI.  To calculate the STR 

we downloaded shortwave infrared reflectance from band 7 (2105-2155 nm) from 

MOD09A1.006 product from AppEEARS (Team, 2020). This product has a 500 m 

spatial resolution, lower than the one used for the vegetation indices, but a higher 

spatial resolution was not available for this reflectance band. This band´s 

temporal resolution is 8 days. STR was calculated using equation 10, where RSWIR 

was band 7. 

𝑆𝑇𝑅 =
(1−𝑅𝑆𝑊𝐼𝑅)2

2𝑅𝑆𝑊𝐼𝑅
  (10) 

Firstly, we converted the 8 days-time series to 10 days period series like the NDVI 

and VCI. For every month that had 4 values of this time series, every two values 

were averaged to obtain 3 values instead of 4. When a month had 3 values, its 

values remained untouched. Secondly, to match spatially the STR and NDVI, 

every NDVI pixel was given an STR value based on their centroid proximity. This 

was made for every pixel in all its time series. After building a dataset of time 

series and pixels. We proceeded to calculate the trapezoidal space NDVI-STR. 

We divided the pixels into two areas based on their land use differences. 

Therefore, the soil moisture estimator was calculated separately for the north and 

south parts, where the pixels were cereal croplands and pasture, respectively. To 

calculate W, the moisture estimator, four parameters are calculated for each STR-

NDVI space id and sd are the intercept and the slope of the dry (upper) edge and 

iw and sw are the intercept and the slope of the wet (lower) edge (Figure 2.1). Using 

these parameters, NDVI and STR, the W is calculated using equation 11. After 

this calculation, all values higher than 1 were replaced by 1, producing a 0-1 

range for this index.  
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Figure 2.1. Sketch illustrating parameters of the OPTRAM model used in 

equation 12 to estimate parameters. 

 

𝑊 =
𝑖𝑑+𝑠𝑑𝑁𝐷𝑉𝐼−𝑆𝑇𝑅

𝑖𝑑−𝑖𝑤+(𝑠𝑑−𝑠𝑤)𝑁𝐷𝑉𝐼
  (11) 

Given that ultimately, we wanted to compare the anomaly of VCI (ZVCI) with the 

anomaly of soil moisture we took an additional step in calculating the Water 

Condition Index (WCI), submitting the W to the same transformation that NDVI 

had undergone to calculate VCI. Therefore, we calculated the WCI using 

equation 12, where W is each value of the time series and Wmin and Wmax are 

respectively, their multiyear minimum and maximum for every 10 days. 

𝑊𝐶𝐼 =
𝑊−𝑊𝑚𝑖𝑛

𝑊𝑚𝑎𝑥−𝑊𝑚𝑖𝑛
   (12) 

2.2.2. Probabilities of anomalies for WCI and VCI 

 

For both WCI and VCI anomalies were calculated using a Z-score as in equation 

13, where µ is the yearly average and σ is the yearly standard deviation for each 

date of the year.  
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𝑍𝑊𝐶𝐼 =  
WCI− μWCI

σWCI
   (13) 

For these anomalies, the probabilities of passing different thresholds were 

calculated for each 10-day period throughout the time series. Three thresholds (-

0.5, -0.7, and -1) were selected following the thresholds used for Standard 

Precipitation Index (SPI, McKee et al., 1993) and Standard Precipitation 

Evaporation Index (SPEI, Vicente-Serrano et al., 2010), indices commonly used 

for drought monitoring (Almeida-Ñauñay et al., 2022; Pei et al., 2020). These 

levels were established based on previous research for drought identification 

using the multi-thresholds run theory proposed by He et al. (2016) (Ma et al., 

2022). Firstly, we calculated the probability of having a negative anomaly given 

the time series, for easier understanding this will be called base probability. 

Secondly, the conditional probability going through each level of the anomaly of 

ZVCI given an anomaly of ZWCI below -0.3. The conditional probability 

(understood as frequentist probability or relative frequency) was calculated 

using equations 14A and 14B, for ZVCI and ZWCI, for data from the same time 

period and taking a lead or positive lags of ZVCI regarding ZWCI. 

𝑃(𝐴|𝐵) =  
P(A∩B)

P(B)
  (14A) 

P(A ∩ B) = 𝑃(𝐴|𝐵) ×  P(B)  (14B) 

Where the probability of A under the condition of B equals the probability of A 

and B occurring together divided by the probability of B. 

2.3. Scaling properties of vegetation time series 

2.3.1. Hurst index 

To analyse the persistence of NDVI in each area, HI (Hurst, 1951) was calculated 

using the package “pracma” (version 1.9.9, Borchers and Borchers, 2019) in R 

Software. We used the corrected Hurst index. This index splits the time series 

into subseries, with τ indicating the subseries number. It normalises the subseries 
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by subtracting the average for each subseries of the time series. Secondly, it 

calculates the cumulative series range (R(τ)) for each subseries. This range is 

divided by the standard deviation (S(τ)) of each subseries. The Hurst exponent 

(H) is then calculated using equation 15: 

𝑅(𝜏)

𝑆(𝜏)
 = 𝑐𝜏𝐻   (15) 

Where c as a constant of proportionalities, related to the log-log plot from R(τ)/ 

S(τ) and the size of the subseries as it is exemplified for three subseries in  Figure 

2.2. From the slope of the log-log plot, the H can be calculated. 

 

Figure 2.2: Exemplification for three subseries size (d) of how the Hurst Index 

using the rescale range method is calculated. Where R(τ)/ S(τ) is the assembled 

average of the range divided by the standard deviation. 

 

2.3.2. Generalised Structure Function 

GSF is used to characterise the scaling behaviour of non-overlapping fluctuation 

at different scale increments. For non-stationary processes, GSF of order q is 

defined as the qth moment of initial values x(i) increments, similar to a 

generalized variogram. The equation is: 
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𝑀𝑞(𝜏) ≡ 〈|𝑥(𝑖 +  τ) − 𝑥(𝑖)|𝑞〉   (16) 

Where i denotes the ith data point and 〈 〉 represents the ensemble average, and τ 

is the lag time (i.e. i ± τ representing the(𝑖 ± τ)𝑡ℎ data point). GSF are generalised 

correlation functions. It is particularly evident from eq (16) for q=2, giving the 

variogram, which is frequently used in geostatistics. In general, q may be any real 

number, either positive or negative. However, there are divergence problems 

inherent to the negative order exponent so computations are best restricted to 

positive real numbers. We will use positive q up to 4 in this work to reduce 

increasing errors related to higher-order statistical moments (Davis et al., 1994). 

If the process x(i) is scale-invariant and self-similar or self-affine over some range 

of time lags 𝜏𝑚𝑖𝑛 ≤ τ ≤ 𝜏𝑚𝑎𝑥 then the qth –order structure function is expected to 

scale as: 

𝑀𝑞(𝜏) ≡ 𝐶𝑞τ𝜁(𝑞) ≈ τ𝜁(𝑞)   (17) 

Where Cq can be a function of τ, which varies more slowly than any power of τ 

and (q) is the exponent of the structure-function. ζ(q) has been calculated as a 

log-log plot of 𝑀𝑞(𝜏) and τ/𝜏𝑚𝑎𝑥 , where ζ(q) would be the slope for each q. ζ(q) 

is a monotonically non-decreasing function of q if x(i) has absolute bounds 

(Frisch and Kolmogorov, 1995; Marshak et al., 1994). ζ(q) is calculated for the time 

scales where the fluctuation functions increase linearly, with lags starting at eight 

days (time between NDVI collections). 

The behaviour described by Equations (16) and (17) is called “multiscaling” 

because each statistical moment scales with a different exponent. Therefore, a 

hierarchy of exponents can be defined using (q) as shown in Equation (18) and 

simplified to be an example in Figure 2.3. Where H(q) is the generalised Hurst 

exponent (Davis et al., 1994) and is used to calculate ΔH as H(0.25)-H(4). 

 

𝐻(𝑞) =
𝜁(𝑞)

𝑞
   (18) 
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Figure 2.3: Exemplification for the last steps of how the generalized Hurst 

exponent is calculated using the generalized structure function. The process 

starts with the generalized variogram to finish calculating H(q) and ΔH. 

2.3.3. Multifractal detrended fluctuation analysis 

The main feature of multifractals is that a high variability characterises them over 

wide ranges of temporal or spatial scales associated with intermittent 

fluctuations and long-range power-law correlations. To undertake a multifractal 

analysis, Kantelhardt et al. (2002) developed Multifractal Detrended Fluctuation 

Analysis (MF-DFA). This method unlike the previous methods removes the local 

tendencies of the time series before calculating multifractal features.  

The MF-DFA operates on x(i), where 𝑖 = 1,2, . . . , 𝑁 and N is the series’s length. 

We represent the mean value with  �̅�. We assume that x(i) are increments of a 

random walk process around the average �̅�. The integration of the signal, 

therefore, gives the profile: 

𝑦(𝑖) = ∑ [𝑥(𝑘) − �̄�]𝑖
𝑘=1    (19) 

Furthermore, the integration will reduce the level of measurement noise present 

in observational and finite records. Next, the integrated series is divided into Ns 
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= int (N/s) non-overlapping segments of equal length s. We then calculate the 

local trend for each of the Ns segments by a least-squares fit. Finally, we 

determine the variance: 

𝐹2(𝑠, 𝜈) =
1

𝑠
∑ {𝑦[(𝜈−1)𝑠+𝑖] − 𝑦𝜈(𝑖)}𝑠

𝑖=1

2
   (20) 

For each segment ν, where 𝜈 = 1, . . . , 𝑁𝑆. Here, 𝑦𝜈(i) is the fitting curve in segment 

ν, in this case, study a line was chosen. After detrending the series, we averaged 

over all segments to obtain the qth-order fluctuation function: 

𝐹𝑞(𝑠) = {
1

2𝑁𝑠
∑[𝐹2(𝑠, 𝜈)]

𝑞

2}

1

𝑞
   (21) 

Where in general, the index variable q can take any real value except zero. In this 

case, we have selected real positive numbers. Repeating the procedure described 

above for several time scales s, Fq(s) will increase with an increasing s. We can 

determine the fluctuation functions’ scaling behaviour by analysing the log-log 

plots of Fq(s) versus s for each value of q (similar to log-log plots of previous 

methods). If the series x(i) is long-range power-law correlated, Fq(s) increases for 

large values of s as a power law as shown below: 

 𝐹𝑞(𝑠)   ∝ 𝑠𝐻(𝑞)   (22) 

H(q) is the generalised Hurst exponent in the function of q. H(q) is calculated for 

the time scales where the fluctuation functions increase linearly at a logarithmic 

scale. It starts at 32 days up to 512 days. Observing Equations (21) and (22), in the 

case that q=2, the equation will be as follows, where𝐹2(𝑠, 𝜈) comes from equation 

20: 

𝐹2(𝑠) = √
1

2𝑁𝑠
∑ 𝐹2(𝑠, 𝜈)  (23) 

 𝐹2(𝑠)   ∝ 𝑠𝐻(2)  (24) 

Therefore, H(2) correspond to the Hurst index estimated using MF-DFA as used 

by Li et al. (2017) and its calculation is exemplified in Figure 2.4. 
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Figure 2.4: Exemplification for the last steps of how Hurst exponent (H2) is 

calculated using the Multifractal detrended fluctuation, but only for q=2, where 

H2 would be the slope.  

As mentioned above, a monofractal series with compact support is characterised 

by H(q) independent of q. Different scaling of small and large fluctuations will 

yield a significant dependence of H(q) on q having higher ΔH, calculated as 

H(0.25)-H(4). The difference in scaling increases with increasing dependency. 

Once that H(q) is calculated, the scaling exponents function (ζ(q)) is derived from 

the expression H(q)/q (Kantelhardt et al., 2002). 

There are two sources of multifractality (i) due to a broad probability density 

function and (ii) due to different long-range correlations (Kantelhardt et al., 

2002). To test the study areas’ multifractality sources, we use the shuffle series to 

eliminate any temporal correlation. If the shuffle series had any multifractality, 

that would be due to a broad probability density function (pdf). The shuffle series 

were obtained using a random array of the length of our time series. We ordered 

our time series to match the order of the random array. To test long-range 

correlations, we use surrogate series (or phase-randomised series). Surrogate 

series were calculated using the method iterated amplitude adjusted Fourier 
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transform (IAAFT, Schreiber and Schmitz, 2000, 1996). If the surrogate series 

exhibited multifractality, that would be due to long-range correlations. Ten 

surrogate and shuffle series were calculated and averaged to compare them with 

the original series, based on previous studies (Mali, 2015; Schreiber and Schmitz, 

1996). The difference between the ΔH of the original and shuffle series (Hcor) is 

quantitatively related to the influence of broad pdf, and the difference of ΔH of 

the original and surrogate series (Hpdf) is related to the influence of long-range 

correlation (Movahed et al., 2006). 

 

2.4. Machine learning  

2.4.1. Variable selection for clustering 

 

Summary statistics of the NDVI time series (first, second and third quartile and 

variance) were calculated to analyse vegetation dynamics, similar to Triscowati 

et al. (2019) and Uehara et al. (2020). However, the statistics were calculated at 

different year moments (phases) where NDVI behaves differently across the year. 

Three periods were chosen when the NDVI experienced more significant, 

following Sanz et al. (2021b). For the selected period, the mentioned summary 

statistics were calculated. Then, the Hurst exponent was calculated for the whole 

NDVI time series using two methods, R/S and DFA. Afterwards, clustering 

techniques were used on the selected summary statistics on their own and with 

each of the Hurst exponents. The results were compared to topographical data: 

elevation and slope.  

Among all summary statistics and the Hurst exponents, a correlation matrix was 

run to select variables that did not have a strong correlation (i.e. <0.75). Principal 

Component Analysis was run when strong correlations were present to select the 

most explanatory variables. Upon selection, clustering analyses were run and 

compared.  
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2.4.2. Clustering 

 

Clustering was made using two different unsupervised machine learning 

methods: k-means and unsupervised random forest (URF). The silhouette index 

was used to compare the different classification results and select the best option 

based on the partition and all proximities for all objects. Silhouette Index was 

calculated following equation 25, where for a cluster A and C, (i) is the average 

dissimilarity i to all other objects of cluster A, and b(i) is the minimum average 

dissimilarity of i to the centroid of cluster C.  

𝑆𝐼(i) =
b(𝑖)−a(𝑖)

max{𝑎(𝑖),b(𝑖)}
     (25) 

To study the differences and similarities between the clusters adjusted rand index 

was used (Hubert and Arabie, 1985), from the R package “fossil v 0.4.0” (Vavrek, 

2011), which determines whether two clusters are similar to each other using a 

contingency table of the two clusters doing an all pair-wise comparison.  

2.4.2.1. K-means 

 

K-means was developed by Stuart Lloyd in 1957 and published in 1982 (Lloyd, 

1982). It is a non-hierarchical and one of the simplest methods to solve clustering 

problems. This method was first coined as k-means by James MacQueen in 1967 

(MacQueen, 1967). This algorithm starts the clustering process by randomly 

assigning a K number of centroids. Secondly, it calculates the distance between 

the data points, and the closest centroid minimises the sum of the square as in 

equation 26):  

𝑑(𝑥, 𝑦) =
1

2
∑ (𝑥𝑖 − 𝑦𝑖)

2 
𝑖    (26) 

The algorithm repeats this process by adjusting the centroids based on the 

calculated distance, iterating a set number, and converging at a fixed point 

(MacKay, 2003). In this paper, Hartigan and Wong's method was used (Hartigan 

and Wong, 1979) with the R packages "stats v. 3.6.2" (Team, 2021). This method 
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reassigns point by point, considering the shift in the means after the reassignment 

of previous points, and it may reassign a point even if it already has an assigned 

centre.  

2.4.2.2. Unsupervised Random Forest 

 

Random forest (RF, Breiman, 2001) is a tree-based ensemble method. That is, 

methods that generate many classifiers and aggregate their results. It uses 

bootstrap aggregating (also called bagging Breiman (1996)) to calculate a large 

number of trees based on the fed predictor variables and selects the most voted 

trees. Random forest is a non-parametric method that builds each tree using a 

deterministic algorithm based on the three main variables: 1) the number of trees 

(nt); 2) the number of predictors tested on each node (m), and 3) the minimal size 

for each node (nodesize). A third of the bootstrap is left out in each node and is 

considered out-of-the-bag (OOB) data. This data is used to get a classification rate 

for each node. The variable importance is calculated for the averaged final tree 

based on the OOB data and their classification rate. Each tree presents different 

variable importance, but it is averaged (Breiman and Cutler, 2007). The R package 

"randomForest v. 4.6-14" was used (Liaw and Wiener, 2002) to calculate the RF 

as an unsupervised method, utilizing the proximity matrix as predictor variables.  

 

2.5. Areas of study 

 

This thesis has focused on the South-east of Spain, in Murcia and Almeria 

provinces Figure 2.5, as two of the aridest provinces in Spain (along with Alicante 

and Fuerteventura and Lanzarote, in the Canary Islands). We divided the thesis 

into two main blocks with two parts each. The first block would be the temporal 

response of vegetation indices to physical parameters such as precipitation and 

water soil content. This block is divided into the first part, the temporal response 

of NDVI to temperature and precipitation, and the second part the temporal 
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relationship of ZVCI with ZWCI. The second block uses fractal analyses and is 

divided into the third and fourth parts of this thesis. The third part is the scaling 

properties of vegetation indices (NDVI and NDVIa) and the fourth part is the 

clustering of rangelands using annual patterns and persistence of NDVI series.  

In the following sections, we describe the areas of study for each of these parts.  

 

Figure 2.5: Selected provinces for this thesis (in blue). Both of them are 

characterized by arid climates. 

2.5.1. Murcia Agricultural region- temporal response to precipitation 

of NDVI and scaling properties of NDVI 

 

To study the temporal response of NDVI to temperature and precipitation and 

the scaling properties of NDVI, four plots were selected in Murcia province 

(Figure 2.6). The area has a Mediterranean arid climate with annual precipitation 

of less than 300 mm, although there are regional variations (Barceló and Nunes, 

2009). Four square areas with 2.5 km sides (6.25 ha) were selected for this study. 

They are situated in the vicinity of a meteorological station, covering three 
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different agricultural regions of Murcia: Northeast, Segura River, and Northwest 

(Table 9.1, in Appendix 1). The average temperature varies amongst the four 

areas from 14.7 to 17.3 °C, and the average accumulated precipitation per eight-

day period ranges from 262 to 348 mm. 

 

Figure 2.6. Location of the study area. (a) Autonomous Community of Murcia. 

(b) Agricultural regions of Murcia. (c) Selected areas in three agricultural regions 

of Murcia province. Numbers refer to the sampling areas.  
 

All the areas are used as rangeland, two predominantly herbaceous (A1 and A2) 

and two mainly covered by shrubs or trees (A3 and A4). Area 1 (A1) is mostly 

covered by stubble from cereal crops. Area 2 (A2) is almost entirely covered by 

mixed croplands used for stubble grazing with some grassland and scrubland. 

Area 3 (A3) has a top grassy area mixed with shrubs and with few forested areas 

surrounded by tree crops with irrigation. Area 4 (A4) is mainly covered by 

coniferous open woodland with rainfed mixed crops on small patches (Figure 

2.7).  
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Figure 2.7. The four areas studied: (a) Area 1 with mostly stubble; (b) Area 2 with 

mixed crops and grasslands; (c) Area 3, with scrublands and mixed crops; (d) 

Area 4 with open woodland.  
 

To study the temporal response of NDVI to temperature and precipitation, two 

spatial resolutions were selected. Low resolution with 500 m and 25 pixels for 

each area and MR with 250 m and 132 pixels for each of the four areas (according 

to the MODIS data availability). On the other hand, only the highest spatial 

resolution (MR) was used to study the scaling properties of NDVI and its 

anomaly (NDVIa). Additionally, with the temporal response of NDVI to 

temperature and precipitation, for A3, we removed pixels that were irrigated 

(Figure 2.7).  Rainfed areas were selected coming up to a total of 11 (LR) and 61 

pixels (MR) in A3 to eliminate the effects of irrigation in the NDVI dynamics. The 

rainfed pixels were selected based on each pixel’s average NDVI for the summer 

months (June, July, and August). Pixels with a summer average below 30 and did 

not have peaks over 40 in their NDVI time series, were selected to be analysed, 

and these pixels match the grassy patch that crosses A3 from the top centre to the 
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right bottom corner. To study the scaling properties of NDVI and its anomaly 

(NDVIa) all pixels from A3 were used (with the highest spatial resolution). The 

other areas are mainly conformed of rainfed crops, grasslands, and reforestation 

that do not present irrigation (Fondo Español de Garantía Agraria, 2021). 

Therefore, all their pixels were used since no irrigation could affect their NDVI 

dynamics.  

 

2.5.2. Los Velez (Almeria)- ZVCI and ZWCI relationship 

To study the relationship between VCI and WCI anomalies a larger set of 

rangeland pixels was selected in Los Velez, in Almeria, southeast of Spain (Figure 

2.8). The pixels had a spatial resolution of 250 m (MR). This area presents a 

mountainous landscape with a slope from 1-14%. With soils dominated by 

slightly acidic sandy soil (Xerochrept). This region has an overall Mediterranean 

climate. It has average monthly temperatures ranging from 5.4 to 24.1 with an 

average accumulated yearly precipitation of 373.8 mm (Fernández González, 

2014). 621 pixels were selected. This rangeland pixel selection was provided by 

Tragsatec in collaboration with Entidad Nacional de Seguros Agrarios (ENESA). 
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Figure 2.8.: Map representing the selected pixels in purple. In light green is the 

agricultural region and in dark green is the province of Almeria. a) Almeria 

province. b) Agricultural region Los Velez. c) Selected pixels. 

2.5.3. South-eastern Spain –Clustering of rangelands based on NDVI 

annual patterns and their persistence 

To study the clustering of rangeland pixels the dataset was collected covering 

three agricultural regions in two different provinces in the southeast of Spain 

(Figure 2.9). Los Velez in the province of Almería and Northwest and Northeast 

regions of the province of Murcia, which will be called Murcia-NW and Murcia-

NE for clarity. These three regions have a Mediterranean arid climate with 

average annual precipitation of less than 300 mm, although with regional 

variations (Barceló and Nunes, 2009). The three regions are mainly placed in 

mountainous areas. The Murcia-NE region is mainly a mix of grassland and 

shrubland, Murcia-NW is dominated by sparse woodland mixed with shrubs, 

and in Los Velez grasslands and shrublands are the major vegetation with 

minimal areas of sparse woodland. These regions include areas with different 

aspects and changing slopes and elevations. 
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Pixels of 250 m were used. The pixel selection was provided by Entidad Estatal 

de Seguros Agrarios (ENESA, Ministerio de Agricultura, Pesca y Alimentación, 

Spain Government), by using Sistema de Información Geográfico de Parcelas 

Agrícolas (SIGPAC, Fondo Español De Garantia Agraria) and the Mapa Forestal 

Español (MFE, Spanish Forest Map). Firstly, pixels categorized as rangeland were 

selected using the SIGPAC and from this previous selection, pixels with a tree 

coverage higher than 15% were discarded to ensure a low tree coverage, based 

on the MFE. 3654 pixels of rangelands were obtained, divided into grasslands, 

shrublands, and open woodlands from this selection. 

 
Figure 2.9. Location of the study area. (a) Selected Provinces (purple). (b) Selected 

agricultural regions of Almeria and Murcia (red). (c) Selected pixels in three 

agricultural regions of Almería and Murcia (light green).  
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3. TEMPORAL RESPONSE OF NDVI TO TEMPERATURE AND 

PRECIPITATION IN ARID RANGELANDS 

3.1. Interannual variation 

When yearly average NDVI, temperature, and precipitation were plotted at the two 

resolutions, different behaviours were found in these 18 years (Figure 3.1 and Figure 

3.2). In all the areas (Murcia plots), NDVI at both resolutions were very similar. In 

A1 and A3, NDVI presents almost a constant value (A1 has around 20 and NDVI 

nearly 30) as does temperature (15 °C in every area, except A3 where it reaches 18 

°C). Precipitation is constant in A1 while in A3 it shows an increasing trend (A3 

presents the lowest precipitation, mostly below 300 mm and the remaining areas 

range between 300 and 400 mm). On the other hand, A2 and A4 NDVI present a 

slight increase (with values around 20 for A2 and 40 for A4). In both areas, 

temperature and precipitation show different trends. 
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Figure 3.1. Bar plots of yearly average NDVI, temperature, and accumulated 

precipitation for A1 (a, b) and A2 (c, d) for Medium and Low resolutions. 
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Figure 3.2. Bar plots of yearly average NDVI, temperature, and accumulated 

precipitation for A3 (a, b) and A4 (c, d) for Medium and Low resolutions. 

 

To study whether these trends, visible in Figure 3.1 and Figure 3.2, are statistically 

significant, a Mann–Kendall test (Kendall, 1975; Mann, 1945) was applied in each 

area (Table 3.1). A1 shows a decreasing trend with NDVI MR and LR, but it is only 

significant with MR. On the other hand, A2 to A4 show an increasing trend, 

significant in both resolutions. The temperature increases in A1 to A3 and decreases 

in A4 and precipitation decreases in A1 and A4 and increases in A2 and A3. 

However, temperature and precipitation do not present significant trends, except 

for precipitation in A4, which decreases significantly. 
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Table 3.1. Mann–Kendall test results of the four areas with two spatial resolutions 

for NDVI, temperature and precipitation; * means that the trend was found 

significant; Temp: Temperature; Precip: Precipitation. MR: Medium resolution; LR: 

Low resolution. Areas: A1, rainfed croplands; A2, rainfed croplands+scrublands; 

A3, grassy+tree crops; and A4, open woodland+crops. 

 

Areas Trend S-Statistics Kendall’s tau p-Value 

A1-MR Decreasing * −15,213 −0.04 <0.05 

A1-LR Decreasing −7466 −0.02 0.34 

A1-Temp Increasing* 8849 0.03 <0.05 

A1-Precip Decreasing −7547 −0.02 0.34 

A2-MR Increasing * 89,524 0.26 <0.05 

A2-LR Increasing * 98,292 0.28 <0.05 

A2-Temp Increasing  9115 0.02 0.25 

A2-Precip Decreasing −4599 −0.01 0.55 

A3-MR Increasing * 18,649 0.05 <0.05 

A3-LR Increasing * 42,338 0.12 <0.05 

A3-Temp Increasing 9912 0.02 0.21 

A3-Precip Decreasing −6017 −0.02 0.44 

A4-MR Increasing * 29,096 0.08 <0.05 

A4-LR Increasing * 24,762 0.07 <0.05 

A4-Temp Decreasing −126 −0.0004 0.98 

A4-Precip Decreasing * −17,068 −0.05 <0.05 

 

3.2. Comparison of low and medium resolution series  

The average NDVI time series with LR and MR are shown in the left column of 

Figure 3.1 and Figure 3.2 for the four areas studied. When the averages of all pixels 

for both resolutions are plotted, they tend to coincide. Nevertheless, we can 

differentiate them at the peaks and valleys of most years. In A1 and A2 (Figure 3.3), 

the two series are very similar. However, we can see some peaks where LR is higher 

for A1 and A2. This effect is more prominent in the A3 case. On the other hand, in 

A4, the differences are minor between the two resolutions (suggesting a larger 

homogeneity in this area). These peaks where LR is higher than MR are due to a few 

pixels and dates where the NDVI are much higher in both resolutions. However, 
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because the MR has more pixels averaged, the smoothing effect is more noticeable. 

Since not all pixels were used for A3, this rise of LR is more conspicuous. 

 
Figure 3.3. Series of average NDVI and ZNDVI for A1 (a, b) and A2 (c, d) for both 

resolutions: orange shows low resolution (500 m) and green shows medium 

resolution (250 m). 

 

 
Figure 3.4. Series of average NDVI and ZNDVI for A3 (a, b) and A4 (c, d) for both 

resolutions: orange shows low resolution (500 m) and green shows medium 

resolution (250 m). 
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In the right column of Figure 3.3 and Figure 3.4, we can observe the ZNDVI. In all 

areas, there is a change in trend during 2006–2008. From 2000 until 2019, the year 

2006 was one of the hottest, and after that, 2007 and 2008 were among the coolest 

years since 1996 (AEMET, 2020), as can be observed in Figure 3.1 and Figure 3.2. 

Looking at Figure 3.1 and Figure 3.3, A1 and A2 show ZNDVI values in different years 

beyond +2 and −2. In these years, there are hotter temperatures for negative values 

with reduced precipitation. When ZNDVI goes above 2, high peaks in precipitation 

and temperature are lower than in other years. ZNDVI in A3 only goes above two 

once, at the end of 2019, coinciding with a strong peak in precipitation (Figure 3.2 

and Figure 3.4). Area 4 does not show values beyond 2 or -2, although it shows how 

the series rises or drops with these events. Regarding the resolution in A1 to A3, we 

can see peaks and valleys where LR has a higher frequency of extreme values. These 

differences are smoother for A4. The use of ZNDVI and its comparison to the NDVI 

series highlights the more significant changes during the series and the differences 

between the two resolutions. In particular, we find that extreme events are more 

pronounced in ZNDVI when using LR, compared to MR. 

The average NDVI values for LR and MR of MODIS display relatively strong 

similarities. However, differences between them in their series’ peaks and valleys 

can be detected (Figure 3.3 and Figure 3.4). These differential patterns among areas 

suggest that it is caused by the difference of the averaged pixels within each area, 

showing that a finer scale is more representative of the area. On the other hand, 

some peaks and valleys are more pronounced, mainly when extreme meteorological 

events occur. These differences show a spatial difference among the pixels. These 

differences are confirmed with the following analysis: boxplots, Pearson correlation 

and regression analysis. 
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3.3. NDVI patterns in relation to meteorological variables  

The LR and MR NDVI annual evolution and temperature and precipitation are 

shown in the following boxplots for each of the studied areas (Figure 3.5 to Figure 

3.8). The LR and MR NDVI values in A1 and A2 are very similar, then A3 presents 

an increase in these values, and A4 has much higher NDVI values than the rest. This 

pattern may be, at least in part, explained by increasing tree coverage in those areas. 

In each graph, the year was divided into different phases as the NDVI average trend 

changed, as it did not match the change in climatic seasons (Table 3.2). Areas 1–3 

were split into five phases, whereas A4 was split into four phases. 

Table 3.2. Division of phases following the behaviour of NDVI. The selected phases 

in which there is an NDVI trend are shown in bold. Areas: A1, rainfed croplands; 

A2, rainfed croplands+scrublands; A3, grassy+tree crops; and A4, open 

woodland+crops. 

Initial Dates 
Area 1 to 3 Area 4 

Phases NDVI Trend Phases NDVI Trend 

01-Jan Phase 1 Steady 
Phase 1 Decreasing 

06-Mar 
Phase 2 Increasing 

30-Mar 
Phase 2 Steady 

23-Apr 
Phase 3 Decreasing 

17-May Phase 3 Decreasing 

28-Jul Phase 4 Steady 
Phase 4 Increasing 

06-Sep Phase 5 Increasing 
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Figure 3.5. Boxplots of NDVI Medium Resolution (MR) for A1 (a, b) and A2 (c, d) 

in blue, average temperature in orange, and accumulated precipitation in purple. 

 

 
Figure 3.6. Boxplots of NDVI Medium Resolution (MR) for A3 (a, b) and A4 (c, d) 

in blue, average temperature in orange, and accumulated precipitation in purple. 
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Figure 3.7. Boxplots of NDVI Low Resolution (LR) for A1 (a, b) and A2 (c, d) in dark 

blue, the average temperature in orange, and accumulated precipitation in purple. 

 

 

Figure 3.8. Boxplots of NDVI Low Resolution (LR) for A3 (a, b) and A4 (c, d) in dark 

blue, the average temperature in orange, and accumulated precipitation in purple. 

 

A1 and A2 present a larger dispersion in NDVI during the spring (March, April, 

and May). This dispersion is present but less prominent in A3, probably due to its 

less abundant precipitation. A4 exhibits a more consistent dispersion of values 
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throughout the year with a reduction during the summer (June, July, and August), 

given by the almost complete tree coverage of this area. NDVI values decrease 

during the summer in all areas with a more visible trend in A4. NDVI and 

temperature appear to show a delay between their peak values. The average 

temperature peaks occur on July 28 in all the zones. The NDVI peaks on the July 20 

in all the areas except A4, which showed it on July 12 (Figure 3.5 and Figure 3.7 for 

A1 and A2, and Figure 3.6 and Figure 3.8 for A3 and A4). Areas A1 to A3 are more 

heavily influenced by agricultural practices, which may cause the delay between 

NDVI and temperature, which only takes eight days. Area A4, as an open forest, 

does not have any irrigation regimes that can relate to an earlier peak of NDVI when 

temperatures rise. No different trends were found when boxplots were plotted for 

weeks, fortnights, months, or seasons (data not reported). Meteorological trends 

remain similar regardless of the temporal scale. 

NDVI values are highly related to water availability, as stated by Holzapfel et al., 

(2006). NDVI responses are strongly linked to temperature in Mediterranean 

habitats, although this relationship weakens when precipitations are high (Alcaraz-

Segura et al., 2009). In Murcia, the precipitations are scarce, with dry winters and 

almost no precipitation during the summer months. Furthermore, the temperature 

rises to its peak in July and August, leading to decreasing NDVI values. These 

values rise when the precipitation begins, and the temperature starts to descend. 

Our data show similar trends of higher NDVI values when precipitation increases, 

as highlighted by Chen and Weber (2014) and Iglesias et al. (2016). Area 4, located 

in the northwest county of Murcia, has relatively more water abundance and larger 

NDVI values. 

We found differences in the boxplots among resolutions in A4, which is the most 

heterogeneous landscape, with a mix of tree-, scrub-, and grassy-dominated pixels. 

The medium resolution provided more significant results when studying their 

tendencies; the Mann–Kendall test for A1 with MR showed a tendency that was not 
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visible with LR. Regression analysis provided more robust results for the 

relationship of NDVI and climatic variables with MR in A2 and A3, while A1 and 

A4 had smoother results than A2 and A3. Additionally, MR NDVI had more 

delayed lagged correlations. The use of medium or low resolution may depend on 

the spatial heterogeneity of the areas of study. This is probably due to a more 

detailed depiction of NDVI values in MR, as a smaller pixel size allows us to 

separate areas that could be spatially diverse. MR allows emerging a more lagged 

correlation without being tampered with by the surroundings if an area dries at 

different times. 

Using both resolutions shows a clearer image of the selected areas, especially 

highlighting those that are more heterogeneous. These results agree with Tarnavsky 

et al. (2008). 

3.4. Intra-annual regression by phases  

The regression analysis results between NDVI with temperature and precipitation 

by phases using the average of 18 years are shown in Figure 9.1–Figure 9.4 (in 

Appendix 2) for temperature and Figure 9.5–Figure 9.8 (in Appendix 2) for 

precipitation, a summary table of their R2 are in Table 3.3. Phases 1 and 4 were 

eliminated in A1–A3 and Phase 2 in A4, since their NDVI values were steady (). The 

regression analysis shows that for A1 to A3 (Figure 9.1–Figure 9.3) temperature has 

a more substantial effect in NDVI in phases 2, 3, and 5, compared to phases 1 and 4, 

although phase 5 shows a slightly weaker relationship for A2, and especially A3. In 

A4, phases 3 and 4 show a strong relationship in the regression analysis and mild 

for phase 2 (Figure 9.4). 
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Table 3.3: R2 from regression analyses shown in Appendix 2, for each area and 

spatial resolution. * was added when regression analysis was statistically significant 

(p-value<0.05). Phases in parentheses and green are for Area 4 which shows 

different vegetation dynamics to the other series. A1, rainfed croplands; A2, rainfed 

croplands+scrublands; A3, grassy+tree crops; and A4, open woodland+crops. 

Average Temperature (Temp) and Accumulated Precipitation (Pp). 
 

Meteorological 

variables 

Selected 

phases 

Areas and spatial resolutions 

A1 A2 A3 A4 

LR MR LR MR LR MR LR MR 

Temp 

Phase 2 (1) 0.98* 0.98* 0.89* 0.97* 0.99* 0.98* 0.91* 0.93* 

Phase 3 0.95* 0.97* 0.84* 0.96* 0.92* 0.98* 0.95* 0.99* 

Phase 5 (4) 0.97* 0.98* 0.68* 0.95* 0.7* 0.89* 0.99* 0.99* 

Pp 

Phase 2 (1) 0.04 0.057 0.31 0.07 0.007 0.055 0.21 0.21 

Phase 3 0.44* 0.55* 0.55* 0.69* 0.55* 0.69* 0.37 0.08 

Phase 5 (4) 0.003 0.009 0.00 0.03 0.01 0.001 0.001 0.008 

 

The regression analysis for precipitation shows that for A1 to A3 (Figure 9.5–Figure 

9.7), the herbaceous areas, NDVI in phase 3 is influenced by precipitation, while the 

others show a fragile relationship. No strong relationships are found in any phases 

in A4 (Figure 9.8). Due to the use of average values in the regression, differences 

between the two resolutions are small, although LR tends to have lower R2 values 

than MR. 

3.5. NDVI and meteorological series correlations 

The Chow test confirmed significant structural differences between phases for all 

areas (Table 3.4). Medium- and low-resolution NDVI produced similar results in 

the previous analyses. However, there were differences, particularly regarding the 

lagged responses. This paragraph describes the results of MR NDVI correlation 

analysis and discusses the differences with LR NDVI. The correlation values 

mentioned are the highest lagged correlation (Table 3.5 and Table 3.6). NDVI has 

similar lags in each phase throughout A1 to A3. In phases 1 and 4, the NDVI values 

experience little change (with a difference within these phases between 4 and 10 in 

NDVI). 
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For this reason, temperature and precipitation have a minimal correlation with 

NDVI during these phases. Phase 2 shows a positive correlation between NDVI and 

temperature for these three areas: 0.32 for A1, 0.28 for A2, and 0.25 for A3. Phase 3 

presents a moderate negative correlation for A1 and A2 (−0.73 and −0.61, 

respectively) and a low correlation (−0.12) in A3. Phase 5 has a low negative 

correlation for A1 (−0.32), A2 (−0.35), and A3 (−0.04). Area 4 always presents a 

negative correlation between temperature and NDVI, all lower than −0.4 except in 

phase 3, which has a stronger negative correlation of −0.73. Precipitation presents 

small positive values in all phases and areas, all below 0.35. 

Table 3.4. Chow test of NDVI and time of all areas and phases, given with F-statistic 

and p-value for each continuous phase pair: phase 1 (P1), phase 2 (P2), phase 3 (P3), 

and phase 4 (P4). Areas: A1, rainfed croplands; A2, rainfed croplands+scrublands; 

A3, grassy+tree crops; and A4, open woodland+crops. F-stat: F-statistic, and p-val.: 

P-value.  

Phases 
A1 A2 A3 A4 

F-stat. p-val. F-stat. p-val. F-stat. p-val. F-stat. p-val. 

P1–P2 7.05 0.001 7.44 0.001 6.31 0.002 71.16 0.000 

P2–P3 4.67 0.010 3.33 0.037 4.54 0.011 108.00 0.000 

P3–P4 60.96 0.000 33.81 0.000 22.64 0.000 99.95 0.000 

P4–P5 53.44 0.000 34.65 0.000 48.39 0.000   
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Table 3.5. Lagged correlations of medium resolution NDVI and meteorological 

parameters (Meteo) for A1 and A2. Only the phases with an increasing or decreasing 

NDVI trend are included. For each phase, bold values show the strongest 

correlations among the different time lags tested. Average Temperature (Temp) and 

Accumulated Precipitation (Pp). 

Area Meteo Phase 
Lag Time (Days) 

0 8 16 24 32 40 48 

A1 

Temp 

Phase 2 0.23 0.3 0.32 0.29 0.29 0.19 0.13 

Phase 3 −0.72 −0.72 −0.72 −0.72 −0.73 −0.7 −0.66 

Phase 5 −0.5 −0.52 −0.52 −0.51 −0.52 −0.51 −0.5 

Pp 

Phase 2 0.11 0.19 0.26 0.24 0.28 0.28 0.2 

Phase 3 0.21 0.22 0.21 0.2 0.15 0.12 0.15 

Phase 5 0.08 0.08 0.11 0.13 0.17 0.23 0.25 

A2 

Temp 

Phase 2 0.18 0.22 0.25 0.24 0.29 0.21 0.17 

Phase 3 −0.58 −0.58 −0.59 −0.59 −0.61 −0.58 −0.55 

Phase 5 −0.35 −0.35 −0.34 −0.34 −0.34 −0.33 −0.32 

Pp 

Phase 2 0.12 0.12 0.15 0.19 0.17 0.15 0.03 

Phase 3 0.17 0.19 0.22 0.23 0.19 0.17 0.17 

Phase 5 0.23 0.3 0.32 0.29 0.29 0.19 0.13 
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Table 3.6. Lagged correlations of medium resolution NDVI and meteorological 

parameters (Meteo) for A3 and A4. Only the phases with an increasing or decreasing 

NDVI trend are included. For each phase, bold values show the strongest 

correlations among the different time lags tested. Average Temperature (Temp) and 

Accumulated Precipitation (Pp). 

Area Meteo Phase 
Lag Time (Days) 

0 8 16 24 32 40 48 

A3 

Temp 

Phase 2 −0.09 0.04 0.13 0.25 0.25 0.21 0.20 

Phase 3 −0.04 −0.06 −0.09 −0.12 −0.11 −0.09 −0.07 

Phase 5 −0.02 −0.03 −0.04 −0.04 −0.03 −0.02 −0.01 

Pp 

Phase 2 0.28 0.22 0.14 0.01 0.07 0.10 0.09 

Phase 3 0.06 0.08 0.15 0.19 0.16 0.18 0.17 

Phase 5 0.12 0.10 0.10 0.08 0.08 0.13 0.14 

A4 

Temp 

Phase 1 −0.14 −0.11 −0.07 −0.01 −0.04 0.04 0.09 

Phase 3 −0.71 −0.72 −0.73 −0.72 −0.73 −0.71 −0.69 

Phase 4 −0.31 −0.23 −0.17 −0.07 −0.02 0.00 0.03 

Pp 

Phase 1 0.02 0.03 0.10 0.08 0.12 0.11 0.11 

Phase 3 0.25 0.24 0.25 0.25 0.24 0.21 0.23 

Phase 4 0.34 0.34 0.27 −0.05 −0.02 0.06 0.02 

 

Lags on temperature for A1 to A3 in phases 1 and 4 range from 0 to 8 days, except 

for phase 4 in A2. All of these have very low values due to the constant behaviour 

of NDVI values. In phase 2, the highest correlation between NDVI and temperature 

is found with a 16-day lag in A1 and a 32-day lag in A2 and A3. Phase 3 has lags of 

24 and 32 days for these three areas. Phase 5 differs more between areas, with a lag 

of 32 days for A1, eight days for A2, and 24 days in A3. Area 4 only shows a 16-day 

lag in phase 3, while the rest of its phases present no lag. The differences between 

the areas may be related to two factors, differences between their vegetation and 

their hydrological regimes. Precipitation correlation lags show small similarities 

between all four areas. The scattered precipitations of these habitats and water 

scarcity make it difficult to find a pattern across the areas. These disparities appear 

to be related to differences in heavy rains at specific times in each phase and area. 
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Comparing these results with the LR ones (Table 3.7 and Table 3.8), correlation 

exhibited one of our analyses’ significant differences between the two resolutions. 

The lag presented by the highest correlation with temperature was similar for MR 

and LR, except for some cases where there was an approximate difference of 8-day 

lag. However, phases 4 and 5 present more significant differences with a lag of 16 

and 32 days, in some cases. The precipitation variable presents an almost constant 

smaller lag in the LR, ranging from 8 to 48 days. A partial correlation with NDVI, 

temperature and precipitation was made, but no significant differences were found 

(Table 9.2 and Table 9.3, in Appendix 3).  

Table 3.7. Lagged correlations of Low Resolution (LR) NDVI and meteorological 

parameters (Meteo) for A1 and A2. Only the phases with an increasing or decreasing 

NDVI trend are included. For each phase, bold values show the strongest 

correlations among the different time lags tested. Average Temperature (Temp) and 

Accumulated Precipitation (Pp). 

Area Meteo Phase 
Lag Time (Days) 

0 8 16 24 32 40 48 

A1 

Temp 

Phase 2 0.2 0.25 0.34 0.25 0.33 0.32 0.16 

Phase 3 −0.67 −0.66 −0.66 −0.65 −0.66 −0.64 −0.61 

Phase 5 −0.41 −0.43 −0.44 −0.44 −0.44 −0.42 −0.41 

Pp 

Phase 2 0.18 0.16 0.23 0.26 0.18 0.19 0.18 

Phase 3 0.19 0.19 0.19 0.21 0.15 0.13 0.18 

Phase 5 0.17 0.1 0.11 0.13 0.16 0.23 0.24 

A2 

Temp 

Phase 2 0.16 0.16 0.23 0.2 0.3 0.33 0.22 

Phase 3 −0.45 −0.46 −0.46 −0.46 −0.48 −0.46 −0.46 

Phase 5 −0.18 −0.2 −0.19 −0.19 −0.17 −0.16 −0.15 

Pp 

Phase 2 0.19 0.06 0.16 0.2 0.15 0.03 −0.03 

Phase 3 0.13 0.12 0.21 0.27 0.18 0.2 0.15 

Phase 5 0.2 0.25 0.34 0.25 0.33 0.32 0.16 
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Table 3.8. Lagged correlations of Low Resolution (LR) NDVI and meteorological 

parameters (Meteo) for A3 and A4. Only the phases with an increasing or decreasing 

NDVI trend are included. For each phase, bold values show the strongest 

correlations among the different time lags tested. Average Temperature (Temp) and 

Accumulated Precipitation (Pp). 
 

Area Meteo 
Phase Lag Time (Days) 

 0 8 16 24 32 40 48 

A3 

Temp 

Phase 2 0.09 0.12 0.12 0.12 0.01 0.05 0.09 

Phase 3 −0.40 −0.41 −0.41 −0.42 0.41 −0.39 −0.36 

Phase 5 −0.28 −0.28 −0.27 −0.26 −0.24 −0.20 −0.16 

Pp 

Phase 2 0.31 0.29 0.27 0.18 0.15 0.21 0.14 

Phase 3 −0.08 −0.02 0.04 0.09 0.08 0.12 0.15 

Phase 5 0.16 0.14 0.16 0.15 0.15 0.20 0.19 

A4 

Temp 

Phase 1 −0.17 −0.10 0 0.05 −0.07 0.00 0.02 

Phase 3 −0.66 −0.65 −0.67 −0.66 −0.67 −0.64 −0.63 

Phase 4 −0.29 −0.14 −0.13 −0.01 0.02 0.05 0.08 

Pp 

Phase 1 0.14 −0.01 0.03 0.06 0.13 0.09 0.09 

Phase 3 0.25 0.25 0.22 0.26 0.22 0.18 0.22 

Phase 4 0.41 0.30 0.18 −0.09 −0.07 0.01 −0.02 

 

Our correlation analysis shows that NDVI data are strongly and negatively 

correlated to average temperature when precipitation is strongly limited. The 

intraseasonal variation of the relationship between the NDVI and the 

meteorological variables has been approached by using different phases based on 

the NDVI behaviour. The patterns of NDVI correlations with temperature change 

depending on the land use and the phase selected. Phases 1 and 4 show weak 

correlation values because the NDVI presents a steady pattern. On the other hand, 

phases 2, 3, and 5 have either increasing or decreasing NDVI trends. These phases 

present negative values except for phase 2 for A1 to A3 when the spring 

precipitation occurs. The correlations for NDVI and precipitation are very low, all 

below 0.35. However, the regression analysis highlights a stronger relationship for 

A1 to A3 for phase 3, when the precipitation starts high and steadily drops as 
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temperature increases. A4, covered with trees, does not show a strong relationship 

between NDVI and precipitation where its precipitation in phase 2 is more limited 

than in the other areas. These changes among phases suggest that one of the critical 

factors affecting NDVI is water availability, matching other areas with semiarid and 

arid climates (He et al., 2015; Mahyou et al., 2010) 

 

3.6. Aridity index and NDVI 

After characterizing the climatic variables and NDVI dynamics, we approached 

how the NDVI was affected by the AI, as a combination of precipitation and 

potential evapotranspiration, reflecting the temperature as well. This relation was 

established by accumulating the average NDVI and AI for each phase, defined in 

the different areas. The NDVI and AI was plotted in a cumulative graph. This 

allowed us to see how the different vegetation types representing each area 

responded differently to water availability. Figure 3.9 shows the four areas 

clustered into two groups. On one side, we find A1 and A2 intermingling. These 

two areas present lower cumulative NDVI than A3 and A4, and higher cumulative 

values of AI than A4 and A3, representing different types of crops: A1 and A2 show 

a smaller NDVI in response to a similar AI than A3 and more remarkably A4. 

 The AI for A4 was calculated based on its four phases, instead of five as was done 

for the other areas. However, this change does not affect the pattern and slope of 

this graphic. In the upper part of Figure 3.9, we find A3 and A4 showing a more 

efficient use of water resources. Their higher slope reflects the increase of NDVI as 

AI rises. With more typical Mediterranean vegetation (as opposed to crops in A1 

and A2), A3 and A4 have more efficient water use, particularly A3 with xerophilous 

shrubs like esparto, as opposed to less xeric shrub vegetation, such as rosemary 

found in A4. 
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Figure 3.9. Linear regression analysis of cumulative aridity index and cumulative 

NDVI of all areas for medium resolution (a), and low resolution (b). All R2 values 

are above 0.99. 
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4. SOIL WATER CONTENT AND VEGETATION. THE 

TEMPORAL RELATIONSHIP BETWEEN ZWCI AND ZVCI  

4.1. Water and vegetation condition indices 

Firstly, we studied the dynamics of VCI and WCI without the anomalies of Los 

Velez in Almeria province. Figure 4.1 shows how the vegetation growth increases 

during the end of Summer and the beginning of autumn, then decreases until 

February and increases again until April. Therefore, as the dynamics of VCI do 

not match the season (a rise and a drop are seen for example during the Autumn). 

Following Sanz et al. (2021a) four phases were proposed to analyse the vegetation 

and soil dynamics. In phases 1 and 2 the VCI and WCI have more similar 

dynamics among them, while in phases 3 and 4 the VCI increases and decreases, 

respectively, while the WCI shifts during these periods are subtler. This concurs 

with the increase in temperature that occurs in phases 3 and 4 (Figure 4.2), while 

in phases 1 and 2, the temperature is not as high and precipitations tend to be 

more common, at least compare to phase 4. In phase 3 precipitations are 

abundant but temperature and evapotranspiration play an important role in 

superficial soil water content, obscuring the relationship between precipitation 

and water soil content (Sanz et al., 2021a; Wang et al., 2003).  
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Figure 4.1. Boxplots for vegetation condition index (VCI) and water condition 

index (WCI) for each 10-day period of the year (e.g. Sep_1/2/3 represent the first, 

second, and third ten days periods of September). VCI is represented in dark 

green and WCI in maroon. The blue vertical lines represent the phases split based 

on the VCI dynamics. 
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Figure 4.2. Boxplots for Temperature (orange) and precipitation (blue) for each 

10-day period of the year (e.g. Sep_1/2/3 represent the first second and third 10- 

day periods of September). 

 

Secondly, we studied the time series of the anomaly indices for the average of the 

region, as well as their severity at the three selected thresholds. ZVCI is more 

continuous and smoother than ZWCI, which presents a rougher profile with higher 

peaks (Figure 4.3). 
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Figure 4.3. Time series Z score for the average of the selected pixels of Los Velez. 

In green, we can observe the ZVCI and in blue ZWCI. 

 

Figure 4.4 shows the probability of each threshold for ZVCI to occur for each 10-

day period. The chance of passing the first threshold increases from December to 

the end of May, peaking in April. On the other hand, the probability for ZVCI to 

pass below -1 is kept rather constant for most of the year, increasing 

approximately from 15 % to 25 % from September to mid-October.  This provides 

a basic risk for each period, the base probability. A similar graphic, but for ZWCI 

is presented in Figure 4.5. The probabilities are larger for the -0.5 threshold for 

ZWCI, while the threshold -1 shows more oscillations with more periods with 0, 

compared to ZVCI. However, a similar pattern is shown for thresholds -0.5 and -

0.7 of ZWCI, compared to those thresholds in ZVCI, although the higher 

probabilities are located from December to June, with drops in between. 

 

 

 



Soil water content and vegetation. The temporal relationship between 

ZWCI and ZVCI 

 

63 
 

 

Figure 4.4. Probabilities for the ZVCI to pass below the three thresholds for each 

10-day period. Threshold -0.5 in light green, -0.7 in dark green, and -1 in orange. 

 

Figure 4.5. Probabilities for the ZWCI to pass below the three thresholds for each 

10-day period. Threshold -0.5 in light blue, -0.7 in dark blue, and -1 in purple. 
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4.2. Relationship of VCI and WCI anomalies 

For each threshold, the base probability of ZVCI and the conditional probability 

are shown in Figure 4.6 to Figure 4.8.  For all thresholds, the conditional 

probability is higher from September to April, without considering the lags.  

When positive lags are calculated for ZVCI, the probability compared to no lag 

probability is higher from September to January and some periods of March. The 

increase in probability is larger with smaller anomalies (-0.5), reaching often from 

50% to 80% of conditional probability from September to January (compared to 

an average of 30% of base probability for -0.5). These probabilities decrease when 

we use -0.7, especially, with -1 as the threshold reaching a maximum of 67%. And 

decreasing the probabilities in general, but still staying above the base 

probability, as the base probability also decreases when the thresholds lower. 

 

Figure 4.6. Probability for ZVCI to be below -0.5 (light green), conditional 

probability without lag (dotted blue) and condition probability for lag 4 (grey).  

 



Soil water content and vegetation. The temporal relationship between 

ZWCI and ZVCI 

 

65 
 

 

Figure 4.7. Probability for ZVCI to be below -0.7 (dark green), conditional 

probability without lag (dotted blue) and maximum condition probability for lag 

4 (yellow).  

 

Figure 4.8. Probability for ZVCI to be below -1 (orange), conditional probability 

without lag (dotted blue) and maximum condition probability for lag 4 (dark 

red).  
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For all thresholds from September to April, the conditional probability is higher 

than the base probability for those periods.  Threshold -0.5 has a larger increase 

in predictability from September to November and from the second period of 

January to March, while the increase in predictability is the highest in December 

and the first period of January for threshold -1. This is shown in  Figure 4.9.  From 

September to March the precipitation is more or less abundant but they concur 

with low temperatures. From April, while the precipitations are still falling the 

temperature increases until the end of Summer. Therefore, this could explain 

why the predictability of vegetation anomalies using the water soil content index 

is improved in the months where temperature and evapotranspiration play a 

major role in water soil content (Cui and Shi, 2010; Sanz et al., 2021a; Wang et al., 

2003).  

In Table 4.1 the average predictability for each month and the whole year is 

shown. There it summarizes the months where using ZWCI and ZVCI increases the 

predictability compared to the base probability and therefore these indices could 

be used as a warning system. Further research is needed to expand to other areas 

and different vegetations and ecoregions. 
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Figure 4.9. Difference of the maximum conditional probability using lags and the 

base probability for each threshold (grey -0.5, yellow -0.7, and red -1). 

Table 4.1. The average increase in predictability for each month of the year.  

Periods 

Change in 

predictability 

-0.5 -0.7 -1 

September 7% 3% 3% 

October 39% 24% 8% 

November 39% 31% 16% 

December 30% 33% 39% 

January 8% 12% 12% 

February 19% 18% 7% 

March 16% 16% 12% 

April -1% 2% -1% 

May -6% -8% -10% 

June -9% -10% -7% 

July -1% -10% -4% 

August 6% -3% 1% 

Whole year 12% 10% 6% 
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5. MULTIFRACTAL CHARACTER OF NDVI AND ITS 

ANOMALY  

5.1. Temporal trend analysis 

As in the study of the temporal response of NDVI to temperature and 

precipitation, the Mann-Kendall test was calculated to the original series and the 

anomaly series (Murcia plots), but instead of using the Z-score, we calculated the 

anomaly (NDVIa) by only subtracting the yearly average for each date. Similar 

Mann-Kendall results were found in all four parcels from Murcia province. 

However, in A3 we used all pixels instead of the selection of the shrubland 

without the croplands that surround it, to include wider variation for fractal 

analyses. This area provided the only difference, which switch from decreasing 

(when using only the selected crop pixels) to increasing (when all pixels were 

used (Table 5.1). All four areas exhibit a significant trend. The Pettitt test found a 

shift in the trend in the four areas: A1 and A2, in the autumn of 2006; A3, in the 

autumn of 2007 and A4, in the autumn of 2008 (Figure 5.1 and Figure 5.2).  

The change in the used anomaly was made to compare anomalies without 

seasonality but maintained the differences between areas with different 

vegetation that are normalized when using Z-score.  This was reflected in the 

trend present in the original series was also found in NDVIa. These trends may 

be due to changes in land uses, vegetation evolution or climate change effects 

worthy of further consideration. 
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Figure 5.1. Series of average NDVI (a-c) and NDVIa (b-d) for A1, rainfed 

croplands and A2, rainfed croplands+scrublands. The X signal represents the 

point where the Pettitt test indicated a trend shift. 

 

 

 
Figure 5.2. Series of average NDVI (a-c) and NDVIa (b-d) for A3, grassy+tree 

crops; and A4, open woodland+crops. The X signal represents the point where 

the Pettitt test indicated a trend shift. 
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Table 5.1. Mann-Kendall test results of the four study areas: A1, rainfed 

croplands; A2, rainfed croplands+scrublands; A3, grassy+tree crops and A4 

woodland+crops. The same results were obtained using NDVI and NDVIa. All 

results were statistically significant. 

 

Areas Trend Kendall’s tau p-Value 

A1 Decreasing −0.04 <0.05 

A2 Increasing 0.26 <0.05 

A3 Decreasing −0.05 <0.05 

A4 Increasing 0.08 <0.05 

 

5.2. Hurst index 

The HI (Table 5.2), ranging between 0.68 (NDVI) and 0.91 (NDVIa), indicates a 

persistent character for NDVI and NDVIa series in study areas. However, some 

differences were found between the original NDVI and the NDVIa.  The most 

significant changes between the HIs of NDVI and NDVIa are found in A4, where 

persistence increased by roughly 0.2 when NDVIa was used. Meanwhile, smaller 

increases, between 0.02 and 0.12, are observed in the other areas. Considering 

NDVI, A2 is the most persistent (the highest HI), followed by A3, A4, and A1. 

Nevertheless, when NDVIa was analysed, a different order emerged, and A4 

appeared as the most persistent. Its more extensive tree cover and woodland 

nature are less prone to a high variability showing a higher persistence. On the 

other hand, the other areas remained with similar values and maintained the 

same order as NDVI (A2, A3, and then A1). 
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Table 5.2. Corrected R/S Hurst indices (HI), Generalized Hurst exponent for q=2 

(H(2)) based on Generalised Structure Function(GSF) and Multifractal Detrended 

Fluctuation Analysis(MF-DFA) for the original NDVI and NDVIa from different 

study areas: A1, rainfed croplands; A2, rainfed croplands+scrublands; A3, 

grassy+tree crops and A4 woodland+crops. 

 

Areas 
HI GSF MF-DFA 

NDVI NDVIa NDVI NDVIa NDVI NDVIa 

A1 0.684 0.736 0.677 0.578 0.430 0.348 

A2 0.863 0.893 0.758 0.644 0.504 0.367 

A3 0.762 0.845 0.767 0.614 0.490 0.287 

A4 0.728 0.907 0.829 0.608 0.638 0.295 

 

5.3. Generalized structure function 

Unlike the Hurst index (a monofractal technique), in this section and the next two 

sections, we use multifractal analyses. The fluctuation functions for any moment 

order q reveals the multifractality of a series by its power-law behaviour. Plotting 

the fluctuation function in log-log scales shows the multifractality by its linear 

behaviour from 0.25 to 4.  The scaling exponent was calculated at four different 

time scales (τ): 8, 16, 32, and 64 days (Figure 5.3, only A3 for illustrative 

purposes).  
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Figure 5.3. Log-Log plot of moments function (M(τ,q)) versus lag time scale (τ) 

normalised with the maximum lag time scale (τ*), for Generalised Structure 

Function (GSF), with q ranging 0.25 to 4 for NDVI (a) and NDVIa (b)of A3, 

grassy+forested+crops. The arrow marks the last point included in the linear 

regression. All the regressions obtained an R2≥ 0.97. 

 

Observing the scaling exponent for NDVI, A4 appears on the plot top as the least 

multifractal, while A1 is the most multifractal and A2 and A3 stay in between 

(Figure 5.4). For NDVIa, the scaling exponent showed slight differences between 

A2, A3 and A4, while A1 appears further below the others.  
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Figure 5.4. General Structure Function (GSF) scaling exponents ζ(q) for NDVI (a) 

and NDVIa (b) for the study areas: A1, rainfed croplands; A2, rainfed 

croplands+scrublands; A3, grassy+tree crops; and A4, open woodland+crops. In 

black, it is the scaling exponent of a Brownian motion. 

 

The results of the generalised Hurst exponent with GSF produced similar results 

when compared to R/S analysis. The HI and H(2) from these analyses show minor 

differences when applied to the NDVI series, with disparities ranging from 0.007 

to 0.12 (Table 5.2). These differences were higher when NDVIa series were used, 

with a difference ranging from 0.12 to 0.3. The NDVI series with GSF was more 

persistent than the NDVIa series. In both cases, the analysis revealed a persistent 

character in all four areas.  Comparing the NDVI series of the four areas (Figure 

5.5), A1 appears as the least persistent, A2 and A3 have a very similar pattern, 

with A4 showing a more persistent character than the other areas. 
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Figure 5.5. Generalised Hurst exponents H(q) for the study areas from 

Generalised Structure Function (GSF), for NDVI (a) and NDVIa (b) for each area: 

A1, rainfed croplands; A2, rainfed croplands+scrublands; A3, grassy+tree crops; 

and A4, open woodland+crops. In black is the H(q) of a Brownian motion to 

compare. 

 

On the other hand, NDVIa results were more similar among them. Area 2 

appears as the most persistent, A3 and A4 in the middle and A1 as the least 

persistent. Furthermore, A1 and A2 show a similar pattern, while A3 and A4 

present a more constant profile, very similar between them.   

The ΔH for NDVI with GSF has a minimum of 0.063 and a maximum of 0.116 

(Table 5.3). There are differences between NDVI and NDVIa. Whilst A4 and A1 

are the most multifractal with NDVI, followed by A3 and then A2, with NDVIa, 

a different order emerges. A1 and A2 show the highest ΔH with 0.137 and 0.116, 

respectively. On the other hand, A3 and A4 exhibit small values (0.015 and 0.012, 

respectively). These results match the different patterns between NDVI and 

NDVIa observed in the generalised Hurst exponents.  
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Table 5.3. Multifractality strength based on ΔH, using the generalized structure 

function (GSF) and multifractal detrended fluctuation analysis (MF-DFA), for all 

original NDVI and NDVIa series from different study areas: A1, rainfed 

croplands; A2, rainfed croplands+scrublands; A3, grassy+forested+crops; and 

A4, open woodland+crops. 

 

Areas 
GSF MF-DFA 

NDVI NDVIa NDVI NDVIa 

A1 0.094 0.137 0.386 0.304 

A2 0.063 0.116 0.409 0.259 

A3 0.075 0.015 0.338 0.236 

A4 0.116 0.012 0.360 0.206 

 

5.4. Multifractal detrended fluctuation analysis 

The fluctuation functions revealed the multifractality of the series when analysed 

with GSF and MF-DFA.  The generalised Hurst exponent was calculated for four 

(NDVI) and five (NDVIa) different time scales (s): 32, 64, 128, 256, and 512 days 

(Figure 5.6, only A2 for illustrative purposes). As different time scales were used 

for the GDF and MF-DFA, due to differences in their fluctuation functions, the 

comparison among these results should be taken cautiously. Due to the trends in 

most series, we used MF-DFA to avoid the effects on the Hurst exponent and 

compare the different series for fractal character and persistence or 

antipersistence. In opposition to the GSF results, the generalised Hurst exponent 

of MF-DFA indicated mainly an antipersistent character. For NDVI, A4 appears 

the most persistent area, A2 and A3 appear in the middle, with A1 as the most 

antipersistent (Figure 5.7). All of them start above 0.5 but, except A4, they all 

dropped below 0.5 for q≥2, reflecting an antipersistent character. A more 

antipersistent plot emerged when NDVIa was used, A1 and A2 start above 0.5 

and immediately decrease to the antipersistent as q grows. A3 and A4 have a 

similar pattern but with more antipersistent profiles. Moreover, both NDVI and 

NDVIa A1 and A2,  and A3 and A4 have two different patterns. Although for 

NDVI, each group keeps the same pattern at a different persistency level. The ΔH 
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for MF-DFA, compared to the GSF, tends to have higher values, ranging from 

0.206 to 0.409. ΔH decreased when NDVIa was used for study areas, with a more 

significant difference in A2 (Table 5.3). The common patterns mentioned are 

reflected in their ΔH. A1 and A2 have a higher ΔH, and A3 and A4 have a lower 

ΔH for both series. The generalized Hurst exponents diverged between the GSF 

and MF-DFA. The GSF characterized the series as low-level multifractal and 

persistent. However, when MF-DFA was applied, a larger multifractality and an 

antipersistent character were observed for the same series. 

 
Figure 5.6. Log-Log plot of fluctuation function (F(s,q)) versus time scale (s), for 

multifractal detrended fluctuation analysis (MF-DFA), with q ranging from 0.25 

to 4 for NDVI (a) and NDVIa (b) of A2, rainfed croplands +scrublands. The arrow 

marks the last point included in the regression line. All the regressions obtained 

an R2≥ 0.97. 
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Figure 5.7. Generalised Hurst exponent (H(q)), from the Multifractal Detrended 

Fluctuation Analysis (MF-DFA), for NDVI (a) and NDVIa (b) for each area: A1, 

rainfed croplands; A2, rainfed croplands+scrublands; A3, grassy+tree crops; and 

A4, open woodland+crops. In black is the H(q) of a Brownian motion to compare. 

 

The scaling exponent (ζ(q)) of the four study areas shows a stronger multifractal 

character than GSF results, especially for NDVIa. For NDVI, A1 has the most 

multifractal profile, with A2 and A3 on top and A4 as the least multifractal. This 

order shifts with NDVIa, where all of them show a more multifractal character, 

while A4 changes from the least to the most multifractal, right below A1 (Figure 

5.8). 
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Figure 5.8. Scaling exponents ζ(q), from Multifractal Detrended Fluctuation 

Analysis (MF-DFA), for NDVI (a) and NDVIa (b), for the study areas: A1, rainfed 

croplands; A2, rainfed croplands+scrublands; A3, grassy+tree crops; and A4, 

open woodland+crops. In black, there is the scaling exponent of a Brownian 

motion. 

 

5.5. Sources of multifractality 

The shuffle and surrogate NDVI series analyses revealed similar patterns across 

the study areas (Figure 5.9). Generally, all shuffle series had generalised Hurst 

exponents very close to 0.5, similar to a Brownian motion. The surrogate series 

reported generalised Hurst exponents with a smaller multifractality (ΔH) than 

the original series (Table 5.4). However, some differences in their patterns are 

worth mentioning. A1 and A2 presented a surrogate series that diverged more 

heavily from the original series. At lower-order statistical moments (q=1, 2), the 

shuffle series was slightly lower than a typical Brownian motion. On the other 

hand, A3 and A4 surrogate series were very similar to the original series, and 

their shuffle series were almost always at 0.5. 
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Figure 5.9. Generalised Hurst exponents (H(q)), from multifractal detrended 

fluctuation analysis (MF-DFA), for NDVI (a) and NDVIa (b), for the study areas: 

A1, rainfed croplands; A2, rainfed croplands+scrublands; A3, grassy+tree crops; 

and A4, open woodland+crops. The original series is in dotted purple, the 

surrogate series is in dotted green, and the shuffle series is in dotted blue. To 

compare the figures, the H(q) of a Brownian motion is in solid black. 

 

Table 5.4. Multifractal strength measure by ΔH of Multifractal Detrended 

Fluctuation Analysis (MF-DFA), for original series (NDVI and NDVIa), 

surrogated series (NDVI_su and NDVIa_su), and shuffle series (NDVI_sh and 

NDVIa_sh). Study areas: A1, rainfed croplands; A2, rainfed 

croplands+scrublands; A3, grassy+tree crops; and A4, open woodland+crops. 

 

Areas NDVI NDVI_su NDVI_sh NDVIa NDVIa_su NDVIa_sh 

A1 0.386 0.284 0.029 0.304 0.172 0.017 

A2 0.409 0.361 0.019 0.259 0.198 0.017 

A3 0.338 0.317 0.001 0.236 0.162 0.014 

A4 0.360 0.326 0.017 0.206 0.157 0.013 
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NDVIa results were similar to the mentioned NDVI results. However, the 

original and surrogate series presented a more antipersistent character, and the 

difference between the surrogate and the original series was more conspicuous 

for A3 and A4. Whilst similar to NDVI, A3 NDVIa presented a more divergent 

pattern between these series in higher-order statistical moments (q>2). A4 

presented a more significant difference in the smaller order statistical moments 

(q<2).  To analytically examine the influence of both sources of multifractality, 

Hcor and Hpdf were calculated (Table 5.5). Study areas present a higher 

dominance of long-range correlation multifractality, although A1 present a mix 

of both sources with a Hpdf>0.1.  

Table 5.5. Difference between the ΔH of the original and surrogate series (Hpdf) 

and the difference of ΔH of the original and shuffle series (Hcor) for NDVI and 

NDVIa for the study areas: A1, rainfed croplands; A2, rainfed 

croplands+scrublands; A3, grassy+tree crops; and A4, open woodland+crops. 

 

Areas 
Hcor Hpdf 

NDVI NDVIa NDVI NDVIa 

A1 0.357 0.287 0.103 0.132 

A2 0.390 0.241 0.048 0.061 

A3 0.337 0.222 0.021 0.074 

A4 0.343 0.193 0.035 0.049 

 

Differences in multifractality between the NDVI and NDVIa were observed 

with ΔH and the scaling exponent patterns. The results indicate that part of the 

multifractality is due to seasonality. Nevertheless, long-range correlations 

affected the multifractality observed with the NDVI and NDVIa surrogate series 

(i.e., before and after removing seasonality). On the other hand, there was a 

limited impact of the broad probability density function for all study areas. The 

NDVIa presented a more decisive influence from the broad probability density 

function than the NDVI, particularly in A1, where its multifractality based on the 

broad probability density function of the NDVI series was higher than in other 

study areas. Therefore, we can appreciate two types of long-range correlations 
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based on (i) seasonal and (ii) annual or longer memory processes. We found a 

greater difference in ΔH between the original series of the NDVI and NDVIa, 

compared to the difference between the original and respective surrogate for 

each index (NDVI and NDVIa). This larger difference between the NDVI and 

NDVIa indicates that seasonality had a decisive influence on overall 

multifractality in all areas, except for A1. In this case, the NDVIa series presented 

more multifractality than its surrogate NDVI series. This is likely due to the 

almost complete herbaceous nature of A1. Vegetation in A1 is entirely rainfed 

and cannot take full advantage of deeper soil water compared to arboreal 

vegetation. Therefore, its behaviour is more dependent and similar to 

precipitation, which is more related to a broad probability density function, 

unlike air temperature or humidity (Baranowski et al., 2015). Area 2, while it is 

also dominated by herbaceous crops, presents a grassland area with few shrubs 

and some reforested pixels that will maintain greener vegetation when 

precipitation is scarce. 
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6. CLUSTERING ARID RANGELANDS BASED ON NDVI 

ANNUAL PATTERNS AND THEIR PERSISTENCE 

6.1. Variable selection approach  

For the pixels from Almería and Murcia provinces, all summary statistics 

between the three selected phases (periods where NDVI rose or decreased, from 

chapter 3 and Sanz et al. (2021a)) presented a robust linear correlation (>0.75) 

except for the three variances (Figure 6.1). Principal component analyses (PCA) 

were performed with our statistic variables, including the Hurst exponents (HI 

and H2). Moreover, among those variables with a strong correlation, quartile 3 

of phase 5 was chosen for its higher explanatory power (Table 6.1 and Table 6.2). 

The three variances and quartile 3 of phase 5 were used separately with HI and 

H2, and with neither of them for the clustering analyses. 
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Figure 6.1. Correlation matrix of all variables tested for the three study regions. 

Large, dark blue circles indicate a high correlation, while small, light blue circles 

indicate a low correlation. Ph2/3/5 stands for Phase 2/3/5, and Var for variance. 
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Table 6.1. Three first principal components from the PCA for all the NDVI time 

series variables and H2. Shaded are highlighted those variables with higher 

explanatory power for each principal component. 

Variables PC1 PC2 PC3 

NDVI_H2 0.14 -0.27 0.84 

Var_Ph2 0.13 -0.59 -0.22 

Var_Ph3 0.13 -0.56 -0.37 

Var_Ph5 0.23 -0.38 0.17 

Quartile_1_Ph2 0.32 0.01 0.03 

Quartile_1_Ph3 0.31 0.19 -0.13 

Quartile_1_Ph5 0.31 0.16 001 

Median_Ph2 0.32 0.05 0.2 

Median_Ph3 0.31 0.14 -0.14 

Median_Ph5 0.31 0.11 0.04 

Quartile_3_Ph2 0.32 -0.01 0.01 

Quartile_3_Ph3 0.32 0.08 -0.17 

Quartile_3_Ph5 0.33 0.05 0.07 

    
Standard deviation 3.10 1.36 0.95 

Proportion of Variance 0.74 0.14 0.07 

Cumulative Proportion 0.74 0.88 0.94 

 

Table 6.2. Three first principal components from the PCA for the selected 

variables after removing the variables with strong correlation for the summary 

statistics with the least explanatory power. Highlighted those variables with 

higher explanatory power for each principal component. 

Variables PC1 PC2 PC3 

NDVI_H2 0.36 -0.54 0.74 

Var_Ph5 0.47 0.45 0.13 

Var_Ph3 0.43 0.54 0.07 

Var_Ph2 0.54 -0.13 -0.16 

Quartile_3_Ph5 0.12 -0.43 -0.64 

    
Standard deviation 1.72 1.02 0.76 

Proportion of Variance 0.59 0.21 0.12 

Cumulative Proportion 0.59 0.79 0.91 
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6.2. Clustering Analysis 

6.2.1. K-Means  

The k-mean method was applied, using the aforementioned selected variables, 

for three and four clusters based on the elbow method. The elbow method is a 

heuristic method to determine the number of clusters in a dataset (Ng, 2012), as 

shown in Figure 6.2. K-means clustering was different when three (three-cluster 

analyses) and four (four-cluster analyses) clusters were used. However, for each 

cluster number, the results were identical whether no Hurst exponent, H2 or HI 

were used. The clustering results presented an adjusted Rand Index of 1 among 

the three-cluster analyses and an adjusted Rand Index of 0.84 when comparing 

the results of three- and four-cluster analyses. The new fourth cluster included 

very few pixels, and those pixels had a low Silhouette Index, as shown in Figure 

6.3. The Silhouette Index was the same in all k-means analyses with three- and 

four-cluster analyses (Table 6.3). 

 

Figure 6.2. Elbow method on the selected variables using k-means clustering. 

Three- and four-cluster analyses were performed. 
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Figure 6.3. Silhouette plots for all pixels using k-means for three (a) and four 

clusters (b), showing the Silhouette Index (y-axis) for all pixels for each cluster 

represented on the x-axis with H2. The same results were obtained when k-means 

were run with HI or without HI/H2. 

 

6.2.2. Unsupervised Random Forest  

Using the elbow method with the partitioning around medoids method showed 

a similar graphic as using the k-means method, indicating that three and four 

clusters may be the most appropriate to use (Figure 6.4). 
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Figure 6.4. Elbow method of the selected variables using partitioning around 

medoids clustering, where three and four clusters were selected. 

 

The URF has more variables that affect the results: the number of trees (nt) and 

several variables (m) used for splitting branches. Three or four clusters were used 

and H2, HI, and no Hurst exponent analyses were calculated. For each 

combination, URF was calculated for different nt and m to obtain the analysis 

with the highest Silhouette Index (Appendix 4). Compared with k-means, URF 

showed higher variability between the results, whether using H2, HI, or no Hurst 

exponent. The silhouette values from URF were consistently higher when three 

groups were used for the three analyses with the Hurst exponent from DFA (H2) 

(Table 6.3). When four clusters were used in our analyses, the additional fourth 

cluster showed a low Silhouette Index for that cluster (Figure 6.5). Therefore, only 

the URF clustering for three clusters will be discussed with and without the Hurst 

exponents, focusing on the cluster with the highest Silhouette Index (H2). 
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Table 6.3. Average Silhouette Indices for 3 and 4 clusters for k-means and 

optimised unsupervised random forest. 

 

Analysis 
K-Means Unsupervised Random Forest 

3 Clusters 4 Clusters 3 Clusters 4 Clusters 

Without H2/HI 0.33 0.34 0.51 0.49 

With H2 0.33 0.34 0.62 0.47 

With HI 0.33 0.34 0.50 0.45 

 

 

 
Figure 6.5. Silhouette plots for the different analyses performed with 

unsupervised random forest (URF). On the left are those performed with H2, 

from DFA; the analyses performed with HI, from R/S, are on the right. The top 

graphics are for three clusters and the bottom graphics are for four. Silhouette 

plots show the Silhouette Index (y-axis) for all pixels for each cluster represented 

on the x-axis. 

 

The clustering results were more similar between the analyses done with HI and 

no Hurst exponent than when H2 or HI was used, presenting 0.82 and 0.74 in the 

adjusted Rand Index, respectively. For all cases, cluster 1 was the most 

predominant, and cluster 2 had a higher NDVI and variance, while the opposite 

can be said for cluster 3. These differences were more remarkable when H2 was 
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used. The difference in Hurst exponent (HI or H2, respectively) between the three 

clusters was more evident when H2 was used. The major differences in clustering 

among these three analyses were found in cluster 2, with the highest H2 and 

NDVI (Figure 6.6 and Figure 6.7). These distinct pixels were found mainly in the 

Murcia-NW region (Figure 6.8, and Figure 9.12 to Figure 9.14 in Appendix 5). 

 
Figure 6.6. Comparison of H2 and HI for all clusters when unsupervised random 

forest (URF) was used with H2 (top) and HI (bottom) in all study areas. 
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Figure 6.7. Slope and elevation comparison for all clusters when unsupervised 

random forest (URF) (a) and k-means (b) were used with H2 in all study 

rangelands. 

 



Clustering arid rangelands based on NDVI annual patterns and their 

persistence 

 

91 
 

 
Figure 6.8. (a) On the top are the clustering results of unsupervised random forest 

(URF) in the Murcia-NW when HI (a) or H2 (b) was used, showing clusters 1 and 

2 present in this region, while cluster three was not present in this area. (c) 

compares the differences in clustering when HI (bottom) and H2 (top) were used 

in URF for all the study areas. 

 

6.2.3. Cluster Characterisation and their relevance 

The link between elevation and the Hurst exponent was previously reviewed by 

Peng et al. (2012), who found a good relationship between HI and elevation. The 

Hurst exponent from DFA showed a stronger linear correlation with elevation 

and slope than HI (negatively: the higher or more sloppy terrain would present 

a lower Hurt exponent, especially with H2 from DFA). The same occurred with 

the selected variables used for the clustering analyses (Table 6.4), the variances 

from phases 5 and 2 (those with the highest correlation to H2 and HI, 

respectively). These correlations were reflected in the clustering process. When 

URF with H2 was used, slope and elevation were more heavily differentiated for 
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clusters 2 and 3. These differences were not found when k-means was used since 

the clustering outcome was the same when H2 substituted HI, or no Hurst 

exponent was used. Furthermore, slope and elevation showed a more 

considerable overlap between the clusters on the three-cluster analyses when k-

means was used (Figure 6.7). In this study, the stronger correlation of H2 with 

NDVI time-series variances, compared with HI, suggests the importance of 

detrending in fractal analyses when studying vegetation time series. Differences 

between R/S and DFA were previously reported (Guo et al., 2015), as DFA is less 

affected by size effects or spurious correlation of non-stationary time series 

(Coronado and Carpena, 2005; Guo et al., 2015). Our results support these 

findings, highlighting the relevance of detrending, especially when studying 

different vegetation types. 

Table 6.4. Correlations between H2 and HI with elevation, slope, and variances 

from phases 5 and 2. 

Hurst Exponent Elevation Slope Var_Ph5 Var_Ph2 

H2 −0.81 −0.53 0.54 0.29 

HI −0.25 −0.07 0.05 0.21 

 

When H2 was used, the three-cluster analyses presented more significant 

differences. These differences are shown in their dynamics, as seen in the 

variances calculated separately for each cluster, phase, and NDVI (Figure 6.9), 

where some pixels were distinct. These differences were still found when all 

pixels were averaged for each cluster (Figure 6.7 and Figure 6.9). These 

differences in NDVI are reflected in the type of vegetation found dominating 

each pixel. Cluster 1, where we found the majority of pixels, reflects a great 

variation from woodlands to grasslands. In this region with an arid climate, 

patchy landscapes with different vegetation are typical and they can occur along 

an ecological continuum, rather than as well-defined and separated ecosystems 
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(Ludwig and Tongway, 2000; Tongway and Ludwig, 1997). Cluster 2 shows a 

vast majority of thick forests, while cluster 3 consists mainly of grassland (Table 

6.5), despite cluster 1 having both grassland and woodland, as reflected by an 

intermediate average NDVI for cluster 1, the pixels with higher NDVI in this 

cluster present more dispersed forest mixed with shrubs 

Table 6.5. Percentages of vegetation type of the selected pixels, based on the 

National Forest Map. Results for each cluster are based on URF with H2. 

 

Cluster Woodland Shrubland Grassland 

1 48.0 7.7 44.3 

2 99.7 0.3 0.0 

3 15.5 4.4 80.1 

 

 
Figure 6.9. Time series of cluster prototypical pixels in (a) the cluster type 

(selected based on their vegetation type: mixed shrubland for cluster 1, open 

woodland for cluster 2 and grassland for cluster 3); (b) the average of each cluster; 

and (c) the variances for each cluster and phase, based on the NDVI dynamics 

following (Sanz et al., 2022). 
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The Mann–Kendall test was performed for all the pixels and the area. Although 

all three clusters showed that most pixels had a significant positive trend, cluster 

2 had 90% of the pixels in that category, while clusters 1 and 3 only had 67% and 

64%, respectively (Table 6.6). 

Table 6.6. Percentages of Mann–Kendall results for each cluster based on URF 

with H2. 

 

Significance Cluster 1 Cluster 2 Cluster 3 

Significant decrease 6.2 % 0 % 2.2 % 

Not significant 26.5% 10 % 34.3 % 

Significant increase 67.3% 90 % 63.5 % 
 

Limited differences in pixel clustering were found in both methods of calculating 

the Hurst exponent in areas dominated by grasslands, suggesting that a tendency 

is not present in this NDVI series probably due to the grazing effect on these 

areas. On the other hand, more significant differences in areas with more trees 

were found. In this case, grazing does not limit the vegetation growth of trees, 

showing a trend in their vegetation time series. 

Arid rangelands are spatially heterogeneous (Bird et al., 2002; Vetter, 2005), and 

land degradation and overgrazing can affect the landscape creating a 

grassland/woodland continuum (Martens et al., 2000; Schwinning and Parsons, 

1999). This effect is reflected in the overlapping clusters, showing that discrete 

areas can have similar vegetation. However, differences among the majority of 

the pixels of each cluster in persistence, elevation, and slope were found. In 

further research, other factors relating to elevation and slope could be 

considered, such as availability for the use of heavy machinery in agriculture 

(easier on flatter areas), rainfall, soil depth, or erosion. These factors should be 

considered in land management. 

Clustering vegetation dynamics and comparing those clusters with vegetation 

type illustrate the tendencies related to each vegetation. Understanding these 
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processes is key to the spatiotemporal interactions between human and natural 

systems (Aide et al., 2019; Woodward and Lomas, 2004). Most pixels were 

categorised as antipersistent and with a significantly increasing trend. Land 

managers should make special efforts to avoid further land degradation. Pixels 

categorised as the least antipersistent and with an increasing NDVI trend (as no 

persistent pixels were found) can be used as reference. These pixels can be 

studied to see if different management practices are in place leading to 

differences in persistence and NDVI trends. 

The variability in arid areas was expected since minor changes in slope, rainfall, 

or other characteristics, mean a significant difference in water availability and 

plant growth (le Houérou et al., 1988; Stavi et al., 2008). Using URF to study 

rangelands can improve our understanding of the area even when fieldwork is 

unavailable, highlighting areas with different dynamics, crucial when 

monitoring vegetation. These techniques can also cluster a more extensive range 

of land uses, not only limited to rangeland since they will have more distinctive 

spectral signatures. The inclusion of larger arid areas would clarify whether this 

method can allow us to analyse previous land classification, prioritise areas for 

future surveys, and improve management action. 
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7. CONCLUSIONS 

7.1. General and specific conclusions 

The following paragraphs return to this thesis’s specific goals to explain and 

answer the specific and general goals: 

1. Which is the temporal response of NDVI to temperature and 

precipitation in arid areas and how does it change through the year?  

The relationship between NDVI and meteorological variables shifts across the 

years’ time. Two spatial scales were studied: MODIS MOD09Q1.006 (MR) and 

MOD09A1.006 (LR) showing that NDVI is scale-dependent. These resolutions 

show differences, particularly when studying correlation and regression 

analysis. The results suggest that medium resolution is more suited for spatial 

and lagged temporal patterns. However, when averaged, the trends are similar 

between these two resolutions. Lower resolution scales can be used when the 

studied areas are not spatially heterogeneous for temporal trend analysis, but 

larger resolution scales are recommended on spatially diverse areas. 

Among the climatic variables used, temperature shows the strongest relationship 

with average NDVI. Our results reveal that complex interactions of 

precipitation and temperature may explain real-time NDVI evolution. 

However, their behaviours vary across the selected phases. The use of phases 

based on NDVI patterns, instead of seasons, allows us to describe a more 

realistic depiction of the arid environments, based on their vegetation 

dynamics. The study shows a strong positive correlation of NDVI with 

temperature when high precipitation occurs. Precipitation, however, shows a 

weak correlation with NDVI. The behaviour of both climatic variables points to 

water availability as one of the major drivers of NDVI in Murcia, as it is suggested 

by the positive correlations of temperature and NDVI during phases where 

heavier precipitation occurs. 
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Aridity index and NDVI allowed us to cluster our four areas into two large 

groups, A1 and A2; mainly grazed wastelands showed a low increase of NDVI 

with a high aridity index. In contrast, A4 and A3 with a similar or lower aridity 

index presented a higher NDVI accumulation, showing more efficient use of 

available water; A3, especially, presented a higher slope than A4. However, more 

rangelands and other ecosystems should be analyzed to determine whether or 

not these differences can discriminate and characterize other types of rangelands 

and land uses. 

The intraseasonal relationship of NDVI with climatic variables was studied by 

splitting the analyses according to NDVI patterns. This allowed for viewing 

NDVI dynamics that were obscured when the seasonal division was followed. 

Intraseasonal and interseasonal characteristics should be taken into 

consideration in the definition of agrometeorological indices in rangelands. 

This study provides a discriminating technique for rangeland management and 

policymakers. It is expected that future research will expand the knowledge of 

NDVI drivers at different scales, to develop tools and indices that can help 

further comprehend vegetation communities of agricultural lands. 

2. How does the soil water content index time series relate to the 

vegetation index throughout the year? Can we use the water content 

index as a warning index before vegetation damage? 

Soil water content and vegetation indices show more similar dynamics in the 

months with lower temperatures (from Autumn to the beginning of Spring), in 

these months given the low temperatures, precipitation leads the vegetation 

growth. In the later months when the temperature rises the fall of precipitation 

and water availability depends on the evapotranspiration and type of vegetation.  

The stronger relationship between precipitation and vegetation from Autumn 

to the beginning of Spring is reflected in the feasibility of ZWCI to aid 
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prediction of vegetation index anomalies. During these months the use of ZWCI 

and ZVCI as warning indices has been shown to be possible for Los Velez region, 

in Almeria. Particularly, the months of October, November and December 

showed an average increase of more than 30% in the predictability of vegetation 

index anomalies. More areas are currently being researched to expand and 

improve this research and develop a warning index system.  

3. How is the memory structure of vegetation time series, do different 

methods provide distinct results? 

When comparing NDVI and NDVIa time series, we found similar trends in all 

study areas, which provides evidence of an inherent trend caused by land-use 

changes or climate change effects. When this inherent trend is present, MF-DFA 

allows us to study multifractality once the local trend is subtracted, and shows a 

multiscaling pattern, whilst the GSF can be affected by the inherent trend. Our 

analysis produced similar results to previous research conducted in semi-arid 

areas with analogous land uses and vegetation degradation (Igbawua et al., 

2019). Using the NDVI, the MF-DFA H(q) showed that the area with herbaceous 

crops had a slight antipersistent character. The areas with open forests presented 

a more persistent character, while those with mixed uses appeared in the 

middle. Examining the MF-DFA H(q) for the NDVIa, we could discriminate 

among different land types, as those that are herbaceous and more heavily 

cropped had a steeper slope, resulting in a higher ΔH. Simultaneously, those with 

tree coverage, whether it is an open forest or a tree crop, showed a more 

antipersistent H(q) but a smaller ΔH than then herbaceous-dominated areas. The 

use of surrogate and original series for the NDVIa produced different patterns 

for each study area, highlighting the heavier influence of probability density 

function on herbaceous croplands’ multifractality, compared to those with at 

least partial tree coverage. MF-DFA has been proven to enhance our skills in 

monitoring and discriminating among different land types for rangelands, 
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supporting more accurate land use and management optimization. This research 

focused on the global description of each study area, and further work should 

focus on the spatial heterogeneity of each area. Our approach provides relevant 

information on vegetation dynamics that can inform policymakers and assist in 

the design of risk management programs such as index insurance systems. 

4. Is it feasible to use annual patterns and persistence to cluster 

rangelands with different vegetation types? 

Two methods (R/S and DFA) were used to calculate the Hurst exponent (HI and 

H2). The results were compared using two clustering methods, with summary 

statistics from the NDVI time series. The combination providing the best results 

was obtained based on the Silhouette Index and cluster characteristics. URF with 

the Hurst exponent from DFA (H2) showed the best outcome, compared with 

URF performed with the Hurst exponent calculated with R/S (HI), URF made 

without the Hurst exponent and all the k-means results. 

URF found differences when different Hurst exponent methods were used, 

while k-means found no differences. URF with H2 showed greater differences 

between areas with higher tree coverage and those with a mix of grassland and 

shrubland. Additionally, the H2 time series presented a stronger linear 

correlation with slope and elevation, an essential aspect of vegetation dynamics 

in arid environments. 

The clustering performed with URF and H2 provided three groups that 

presented a sort of continuum in Hurst exponent. On one hand, two clusters 

presented the lowest and the highest Hurst exponent. And those two clusters 

would show a higher representation of grassland (more antipersistent, closer to 

0) and woodland (closer to random, near but all below 0.5), respectively. On the 

other hand, the last cluster would be mostly in between those clusters, showing 

a wide range of H2. These clusters were classified as woodland, shrubland or 
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grassland. Most likely linked to areas that show vegetation succession at different 

stages, as well as a mix of vegetation within the pixels.  

Detrended fluctuation analyses produced significant differences when 

calculating the Hurst exponent in time series that presented a tendency. 

Detrending time series allows for a better understanding of the dynamics of 

vegetation time series, as well as rangeland evolution and future trends. 

Rangeland persistence is a key aspect to consider in rangeland management 

and research. Thus, future research should explore more rangeland, and other 

land uses, and compare different land management practices. 

This thesis shows that NDVI time series can be used to study time and spatial 

variability and vegetation dynamics in arid rangelands, and how the interactions 

of vegetation with temperature, precipitation and soil water content. 

Furthermore, multifractal analysis has great potential to assess the complexity of 

vegetation time series. However, detrending methods are recommended to 

compare areas of different vegetations as distinctive vegetations present different 

slopes of temporal trends.  It is demonstrated that persistence can be used as a 

tool for monitoring rangelands. And can inform management and policy-making 

regarding eco- and agrosystems. 

7.2. Limitations and further research  

7.2.1. Limitations  

 

This study presents several limitations some due to remote sensing techniques 

others due to the research time limit and the limits of the areas of study:  

• MODIS spatial resolution is much larger than most land plots in this 

region. Despite available remote-sensing data with a higher spatial 

resolution, 250 and 500 m spatial resolution was chosen. Both of them 

share the same temporal resolution and time series length. The length of 

the MODIS time series is longer than those with higher spatial resolution.  
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• Besides the spatial resolution issue, temporal lengths are limited by 

satellite data availability, a common problem in remote sensing.  Longer 

time series will provide more robust multifractal results.  

• Land use maps used such as the Spanish forest map and SIGPAC 

represented a single moment. The land use could have changed over time 

which could affect the results when comparing analyses of time series. 

Additionally, there were certain levels of mismatching between the land 

use classifications.  

 

7.2.2. Further research 

 

Further research should consider using more climatic variables to understand 

vegetation dynamics as especially soil water content measurements. In this 

research, the OPTRAM model has been used to estimate superficial water 

content, but field measurements would help calibrate the model and further 

understand vegetation and soil dynamics. Regarding clustering vegetation pixels 

with more multifractal metrics should be tested and studied in a larger number 

of vegetation types.   

Additionally, more multifractal tools could be implemented such as multifractal 

detrended cross-correlation. This enables the study of the power-law behaviour 

of the correlation between two recorded time series, such as two different 

vegetation indices or vegetation indices with temperature or precipitation. 
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9. APPENDICES 

9.1. Appendix 1: UTM coordinates for areas used to study the temporal 

response of NDVI to temperature and precipitation and its scaling 

properties 

Table 9.1. UTM coordinates of each corner of the areas and the coordinates for 

their respective meteorological station. 

Areas Area 1 Area 2 Area 3 Area 4 

Xmin (m) 660,520 635,796 650,064 614,504 

Xmax (m) 663,020 638,296 652,564 617,004 

Ymin(m) 4,284,420 4,273,396 4,225,985 4,219,731 

Ymax (m) 4,286,920 4,275,896 4,228,485 4,222,231 

Stations AL-10 (SIAM) AL-06 (SIAR) CI-32 (SIAR)  CR-32 (SIAM) 

X station (m) 675,585 630,946 652,564 615,466 

Y station (m) 4,289,270 4,276,000 4,228,485 4,218,939 

 

9.2. Appendix 2: Regression analysis used to study temporal response of 

NDVI to temperature and precipitation  

 

Figure 9.1. Regression analysis of average NDVI and temperature series 

separated by phases for LR (a) and MR (b) for A1. 
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Figure 9.2. Regression analysis of average NDVI and temperature series 

separated by phases for LR (a) and MR (b) for A2. 

 
Figure 9.3. Regression analysis of average NDVI and temperature series 

separated by phases for LR (a) and MR (b) for A3. 
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Figure 9.4. Regression analysis of average NDVI and temperature series 

separated by phases for LR (a) and MR (b) for A4. 

 

Figure 9.5. Regression analysis of average NDVI and precipitation series 

separated by phases for LR (a) and MR (b) for A1. 
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Figure 9.6. Regression analysis of average NDVI and precipitation series 

separated by phases for LR (a) and MR (b) for A2. 

 

Figure 9.7. Regression analysis of average NDVI and precipitation series 

separated by phases for LR (a) and MR (b) for A3. 
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Figure 9.8. Regression analysis of average NDVI and precipitation series 

separated by phases for LR (a) and MR (b) for A4. 

9.3. Appendix 3 Lagged partial correlation of NDVI and meteorological 

parameters 

Table 9.2 Lagged partial correlations of medium resolution NDVI and 

meteorological parameters (Meteo) for A1 to A4. Only the phases with an 

increasing or decreasing NDVI trend are included. For each phase, bold values 

show the strongest correlations among the different time lags tested. 

Area Meteo Phase 
Lag Time (Days) 

0 8 16 24 32 40 48 

A1 

Temp 

Phase2 0.28 0.35 0.37 0.31 0.32 0.25 0.19 

Phase3 −0.71 −0.71 −0.71 −0.7 −0.72 −0.69 −0.65 

Phase5 −0.5 −0.51 −0.52 −0.51 −0.5 −0.49 −0.47 

Pp 

Phase2 0.19 0.27 0.32 0.27 0.31 0.32 0.23 

Phase3 0.13 0.17 0.16 0.19 0.01 0.08 0.08 

Phase5 0.08 0.07 0.09 0.08 0.11 0.15 0.16 

A2 

Temp 

Phase2 0.21 0.24 0.27 0.24 0.3 0.25 0.18 

Phase3 −0.57 −0.57 −0.56 −0.57 −0.59 −0.57 −0.53 

Phase5 −0.34 −0.35 −0.34 −0.34 −0.32 −0.31 −0.29 

Pp 

Phase2 0.16 0.16 0.18 0.19 0.19 0.2 0.07 

Phase3 −0.1 −0.04 0 0.03 0.02 0.06 0.05 

Phase5 0.13 0.13 0.16 0.17 0.18 0.16 0.19 

A3 Temp 
Phase2 0.11 0.18 0.24 0.32 0.32 0.28 0.22 

Phase3 −0.48 −0.48 −0.49 −0.5 −0.48 −0.47 −0.43 
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Phase5 −0.34 −0.34 −0.33 −0.32 −0.3 −0.28 −0.24 

Pp 

Phase2 0.32 0.31 0.27 0.18 0.18 0.24 0.15 

Phase3 −0.09 −0.04 0.05 0.11 0.1 0.14 0.14 

Phase5 0.13 0.12 0.14 0.14 0.15 0.2 0.21 

A4 

Temp 

Phase1 −0.14 −0.11 −0.06 0 −0.05 0.02 0.07 

Phase3 −0.69 −0.7 −0.71 −0.7 −0.71 −0.69 −0.67 

Phase4 −0.23 −0.15 −0.17 −0.07 −0.03 0.03 0.04 

Pp 

Phase1 −0.01 0.01 0.09 0.08 0.12 0.1 0.09 

Phase3 −0.08 −0.02 0 0.02 0.01 0.04 0.05 

Phase4 0.26 0.3 0.26 −0.06 −0.02 0.06 0.04 

 

Table 9.3 Lagged partial correlations of low resolution NDVI and meteorological 

parameters (Meteo) for A1 to A4. Only the phases with an increasing or 

decreasing NDVI trend are included. For each phase, bold values show the 

strongest correlations among the different time lags tested. 

Area Meteo Phase 
Lag Time (Days) 

0 8 16 24 32 40 48 

A1 

Temp 

Phase2 0.24 0.30 0.34 0.31 0.37 0.31 0.24 

Phase3 −0.07 −0.03 −0.01 −0.04 −0.01 −0.05 −0.04 

Phase5 −0.45 −0.46 −0.46 −0.45 −0.45 −0.43 −0.40 

Pp 

Phase2 0.23 0.27 0.30 0.24 0.27 0.32 0.24 

Phase3 0.12 0.18 0.23 0.28 0.06 0.11 0.10 

Phase5 0.11 0.09 0.11 0.10 0.12 0.17 0.18 

A2 

Temp 

Phase2 0.20 0.20 0.26 0.25 0.33 0.29 0.24 

Phase3 −0.06 −0.01 −0.12 −0.13 −0.11 −0.09 −0.06 

Phase5 −0.20 −0.21 −0.20 −0.19 −0.17 −0.15 −0.13 

Pp 

Phase2 0.17 0.16 0.19 0.19 0.18 0.17 0.04 

Phase3 0.05 0.02 0.05 0.10 0.02 0.15 0.13 

Phase5 0.14 0.15 0.18 0.18 0.20 0.18 0.20 

A3 

Temp 

Phase2 0.11 0.18 0.25 0.34 0.36 0.30 0.23 

Phase3 −0.15 −0.11 −0.06 −0.04 −0.06 −0.05 −0.03 

Phase5 −0.28 −0.28 −0.27 −0.26 −0.24 −0.20 −0.17 

Pp 

Phase2 0.31 0.30 0.27 0.18 0.15 0.22 0.14 

Phase3 0.20 0.23 0.19 −0.06 0.00 −0.04 −0.07 

Phase5 0.16 0.14 0.16 0.15 0.15 0.21 0.19 

A4 

Temp 

Phase1 −0.14 −0.08 −0.01 0.03 −0.05 −0.01 0.04 

Phase3 −0.68 −0.69 −0.70 −0.70 −0.70 −0.68 −0.66 

Phase4 −0.20 −0.14 −0.15 −0.05 −0.02 0.02 0.03 

Pp 

Phase1 0.01 0.02 0.09 0.08 0.15 0.12 0.08 

Phase3 −0.06 0.00 0.01 0.03 0.01 0.04 0.05 

Phase4 0.30 0.31 0.27 −0.07 −0.01 0.07 0.04 
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9.4. Appendix 4: Silhouette indices calculated for all URF changing mtry and 

number of trees for three clusters. 

 

Figure 9.9. Silhouette indices for three clusters for URF using Hurst exponent 

calculated with Rescaled Range method. “m” represents the number of 

predictors tested on each node. 
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Figure 9.10. Silhouette indices for three clusters for URF using Hurst exponent 

calculated with Detrended fluctuation analysis. “m” represents the number of 

predictors tested on each node. 

 

Figure 9.11. Silhouette indices for three clusters for URF not using any Hurst 

exponent. “m” represents the number of predictors tested on each node. 
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9.5. Appendix 5: Maps of the clusters using URF with HI and H2 for the 

three study provinces.  

 

Figure 9.12. Comparison of the clustering results of URF using HI (a) and H2 (b) 

in the agricultural region of Murcia-NE. Cluster 1 is pink, cluster 2 is green, and 

cluster 3 is blue. 
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Figure 9.13. Comparison of the clustering results of URF using HI (a) and H2 (b) 

in the agricultural region of Murcia-NW. Cluster 1 is pink, cluster 2 is green, and 

cluster 3 is blue. 
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Figure 9.14. Comparison of the clustering results of URF using HI (a) and H2 (b) 

in the agricultural region of Los Velez (Almeria). Cluster 1 is pink, cluster 2 is 

green, and cluster 3 is blue. 


